-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
282 lines (244 loc) · 11.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import igl # You need to import igl first to avoid some errors
import argparse
import json
import os
import shutil
from collections import OrderedDict
from datetime import datetime
from logging import getLogger, StreamHandler, FileHandler, INFO
from os.path import join
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torchvision.utils import make_grid
from tqdm import tqdm
from dataloader import FisheyeToIcoDataset, ToTensor, Normalize
from dataloader import OmniStereoDataset, ColorJitter, RandomShift
from dataloader.icosahedron_dataset import ico_to_erp
from models import IcoSweepNet
from utils import apply_colormap
from utils import evaluation_metrics, InvDepthConverter
from utils.feature_integration import vertex_feat_to_unfold_feat
# global var
args = None
writer = None
# setting logger
logger = getLogger(__name__)
logger.setLevel(INFO)
# create handler
handler_stream = StreamHandler()
handler_stream.setLevel(INFO)
logger.addHandler(handler_stream)
ToPIL = lambda x: transforms.ToPILImage()(x.cpu())
DN = lambda x: 0.5 + (0.5 * x) # DeNormalizer
parser = argparse.ArgumentParser(description='Training for icosweepnet',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('root_dir', metavar='DATA_DIR', help='path to dataset')
parser.add_argument('-t', '--train-list', default='./dataloader/omnithings_train.txt',
type=str, help='Text file includes filenames for training')
parser.add_argument('-v', '--val-list', default='./dataloader/omnithings_val.txt',
type=str, help='Text file includes filenames for validation')
parser.add_argument('--level', type=int, default=7, metavar='N', help='icosahedron resolution level')
parser.add_argument('--depth_level', type=int, default=5, metavar='N', help='icosahedron resolution level')
parser.add_argument('--ndisp', type=int, default=16, metavar='N', help='number of disparity')
parser.add_argument('--epochs', default=30, type=int, metavar='N', help='total epochs')
parser.add_argument('--pretrained', default=None, metavar='PATH',
help='path to pre-trained model')
parser.add_argument('-b', '--batch-size', default=2, type=int, metavar='N', help='mini-batch size')
parser.add_argument('-j', '--workers', default=6, type=int, metavar='J', help='number of data loading workers')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--arch', default='icosweep', type=str, help='architecture name for log folder')
parser.add_argument('--log-interval', type=int, default=1, metavar='L', help='tensorboard log interval')
parser.add_argument('--fov', type=float, default=220, help='field of view of the camera in degree')
parser.add_argument('--aug_real', action='store_true', help='data augmentation for real images. (color jitter etc.')
def run(epoch, mode, model, data_loader, converter, device, optimizer=None, show_metrics=False):
global args, writer
cam_list = model.module.cam_list
ndisp = model.module.ndisp
idepth_level = model.module.idepth_level
if mode == 'train':
logger.info('Training mode')
model.train()
else:
logger.info(f"{mode} mode")
model.eval()
if show_metrics:
preds = []
gts = []
losses = []
pbar = tqdm(data_loader)
for idx, batch in enumerate(pbar):
# to cuda
for key in batch:
batch[key] = batch[key].to(device)
gt_idepth = batch['idepth']
gt_invd_idx = converter.invdepth_to_index(gt_idepth)
if mode == 'train':
# Forward
pred = model(batch)
# Loss function
loss = F.smooth_l1_loss(pred, gt_invd_idx, reduction='mean')
losses.append(loss.item())
# update parameters
optimizer.zero_grad()
loss.backward()
optimizer.step()
else:
with torch.no_grad():
pred = model(batch)
# Loss function
loss = F.smooth_l1_loss(pred, gt_invd_idx, reduction='mean')
losses.append(loss.item())
if show_metrics:
# save for evaluation
preds.append(pred.cpu())
gts.append(gt_invd_idx.cpu())
# update progress bar
display = OrderedDict(mode=f'{mode}', epoch=f"{epoch:>2}", loss=f"{losses[-1]:.4f}")
pbar.set_postfix(display)
# tensorboard log
niter = epoch * len(pbar) + idx
if idx % args.log_interval == 0:
writer.add_scalar(f'{mode}/loss', loss.item(), niter)
if idx % 100 * args.log_interval == 0:
batch_idx = 0
for key in cam_list:
feat, _ = vertex_feat_to_unfold_feat(batch[key])
vis = make_grid([DN(feat[(i + 3) % 5][batch_idx]) for i in range(5)])
writer.add_image(f'{mode}/{key}', vis, niter)
feat, _ = vertex_feat_to_unfold_feat(gt_invd_idx)
vis_gt = make_grid([feat[(i + 3) % 5][batch_idx] / ndisp for i in range(5)])
feat, _ = vertex_feat_to_unfold_feat(pred)
vis_pred = make_grid([feat[(i + 3) % 5][batch_idx] / ndisp for i in range(5)])
writer.add_image(f'{mode}/pred', vis_pred, niter)
writer.add_image(f'{mode}/gt', vis_gt, niter)
# erp images by interpolation
erp_pred = converter.index_to_invdepth(pred[0].detach().cpu()).squeeze().numpy()
erp_pred = apply_colormap(ico_to_erp(erp_pred, idepth_level))
writer.add_image(f'{mode}/erp_pred', erp_pred, niter)
erp_gt = converter.index_to_invdepth(gt_invd_idx[0].detach().cpu()).squeeze().numpy()
erp_gt = apply_colormap(ico_to_erp(erp_gt, idepth_level))
writer.add_image(f'{mode}/erp_gt', erp_gt, niter)
# End of one epoch
ave_loss = sum(losses) / len(losses)
writer.add_scalar(f'{mode}/loss_ave', ave_loss, epoch)
logger.info(f"Epoch:{epoch}, Loss average:{ave_loss:.4f}")
if show_metrics:
errors, error_names = evaluation_metrics(preds, gts, ndisp)
for name, val in zip(error_names, errors):
writer.add_scalar(f'{mode}_metrics/{name}', val, epoch)
logger.info("Evaluation metrics: ")
logger.info("{:>8}, {:>8}, {:>8}, {:>8}, {:>8}".format(*error_names))
logger.info("{:8.4f}, {:8.4f}, {:8.4f}, {:8.4f}, {:8.4f}".format(*errors))
return ave_loss
def main():
global args, writer
args = parser.parse_args()
logger.info('Arguments:')
logger.info(json.dumps(vars(args), indent=1))
# Dataset
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cpu')
if device.type != 'cpu':
cudnn.benchmark = True
logger.info(f"device:{device}")
logger.info('=> setting data loader')
reduction = args.level - args.depth_level
fisheye_transform = transforms.Compose([ColorJitter(), RandomShift()]) if args.aug_real else None
# Dataset
root_train_dataset = OmniStereoDataset(args.root_dir, args.train_list, fisheye_transform, fov=args.fov)
ocam_dict = root_train_dataset.ocams
# camera poses world <- T cam
pose_dict = root_train_dataset.pose_dict
transform = transforms.Compose([ToTensor(), Normalize()])
trainset = FisheyeToIcoDataset(root_train_dataset, ocam_dict, pose_dict, level=args.level, reduction=reduction,
transform=transform)
logger.info(f'trainset:{len(trainset)} samples were found.')
train_loader = DataLoader(trainset, args.batch_size, shuffle=True, num_workers=args.workers)
root_val_dataset = OmniStereoDataset(args.root_dir, args.val_list, fov=args.fov)
val_dataset = FisheyeToIcoDataset(root_val_dataset, root_val_dataset.ocams, root_val_dataset.pose_dict,
level=args.level, reduction=reduction, transform=transform)
logger.info(f'{len(val_dataset)} samples were found.')
val_loader = DataLoader(val_dataset, args.batch_size, shuffle=False, num_workers=args.workers)
logger.info('=> setting model')
model = IcoSweepNet(args.root_dir, args.ndisp, args.level, fov=args.fov)
total_params = 0
for param in model.parameters():
total_params += np.prod(param.shape)
logger.info(f"Total model parameters: {total_params:,}.")
model = model.to(device)
invd_0 = model.inv_depths[0]
invd_max = model.inv_depths[-1]
converter = InvDepthConverter(model.ndisp, invd_0, invd_max)
# setup solver scheduler
logger.info('=> setting optimizer')
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
logger.info('=> setting scheduler')
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=int(2 * args.epochs / 3), gamma=0.1)
start_epoch = 0
# Load pretrained model
if args.pretrained:
checkpoint = torch.load(args.pretrained)
param_check = {
'ndisp': model.ndisp,
'min_depth': model.min_depth,
'level': model.level,
}
for key, val in param_check.items():
if not checkpoint[key] == val:
logger.error(f'Error! Key:{key} is not the same as the checkpoints')
logger.info("=> using pre-trained weights")
model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
logger.info("=> Resume training from epoch {}".format(start_epoch))
#
model = nn.DataParallel(model)
# setup writer
timestamp = datetime.now().strftime("%m%d-%H%M")
log_folder = join('checkpoints', f'{args.arch}_{timestamp}')
logger.info(f'=> create log folder: {log_folder}')
os.makedirs(log_folder, exist_ok=True)
with open(join(log_folder, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent=1)
writer = SummaryWriter(log_dir=log_folder)
writer.add_text('args', json.dumps(vars(args), indent=1).replace('\n', ' \n'))
logger.info('=> copy models folder to log folder')
shutil.copytree('./models', join(log_folder, 'models'))
# setup logger file handler
handler = FileHandler(join(log_folder, 'train.log'))
handler.setLevel(INFO)
logger.addHandler(handler)
logger.info('Start training')
for epoch in range(start_epoch, args.epochs):
# ----------------------------
# training
mode = 'train'
ave_loss = run(epoch, mode, model, train_loader, converter, device, optimizer)
# ----------------------------
# evaluation
mode = 'val'
ave_loss = run(epoch, mode, model, val_loader, converter, device, optimizer=None, show_metrics=True)
scheduler.step()
# save
save_data = {
'epoch': epoch + 1,
'state_dict': model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'ave_loss': ave_loss,
'ndisp': model.module.ndisp,
'min_depth': model.module.min_depth,
'level': model.module.level,
}
torch.save(save_data, join(log_folder, f'checkpoints_{epoch}.pth'))
writer.close()
logger.info('Finish training.')
if __name__ == '__main__':
main()