-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevaluation.py
201 lines (171 loc) · 7.25 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import igl # You need to import igl first to avoid some errors
import argparse
import json
import os
from collections import OrderedDict
from logging import getLogger, StreamHandler, FileHandler, INFO
from os.path import join
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm
from dataloader import FisheyeToIcoDataset, ToTensor, Normalize
from dataloader import OmniStereoDataset
from models import IcoSweepNet
from utils import evaluation_metrics, InvDepthConverter
# global var
args = None
writer = None
# setting logger
logger = getLogger(__name__)
logger.setLevel(INFO)
# create handler
handler_stream = StreamHandler()
handler_stream.setLevel(INFO)
logger.addHandler(handler_stream)
ToPIL = lambda x: transforms.ToPILImage()(x.cpu())
DN = lambda x: 0.5 + (0.5 * x) # DeNormalizer
parser = argparse.ArgumentParser(description='Training for icosweepnet',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('root_dir', metavar='DATA_DIR', help='path to dataset')
parser.add_argument('pretrained', metavar='PRETRAINED_PATH', help='path to pre-trained model')
parser.add_argument('-v', '--val-list', default='./dataloader/omnihouse_val.txt',
type=str, help='Text file includes filenames for validation')
parser.add_argument('-b', '--batch-size', default=2, type=int, metavar='N', help='mini-batch size')
parser.add_argument('-j', '--workers', default=6, type=int, metavar='J', help='number of data loading workers')
parser.add_argument('--arch', default='val_icosweep', type=str, help='architecture name for log folder')
parser.add_argument('--log-interval', type=int, default=1, metavar='L', help='tensorboard log interval')
parser.add_argument('--fov', type=float, default=220, help='field of view of the camera in degree')
parser.add_argument('--save_depth', action='store_true', help='save depth prediction')
def run(epoch, mode, model, data_loader, converter, device, optimizer=None, show_metrics=False, depth_folder=None):
global args, writer, logger
ndisp = model.module.ndisp
if mode == 'train':
print('Training mode')
model.train()
else:
print(f"{mode} mode")
model.eval()
if show_metrics:
preds = []
gts = []
gt_idepths = []
if depth_folder is not None:
os.mkdir(depth_folder)
losses = []
pbar = tqdm(data_loader)
# save_gt = True
# if save_gt:
# for idx, batch in enumerate(pbar):
# gt_idepth = batch['idepth']
# gt_idepths.append(gt_idepth.cpu())
# gt_idepths = torch.cat(gt_idepths)
# if depth_folder is not None:
# for i in range(len(gt_idepths)):
# fname = join(depth_folder, f'gt_{i + 1:05}.npy')
# np.save(fname, gt_idepths[i].numpy())
# return -1
for idx, batch in enumerate(pbar):
# to cuda
for key in batch:
batch[key] = batch[key].to(device)
gt_idepth = batch['idepth']
gt_invd_idx = converter.invdepth_to_index(gt_idepth)
if mode == 'train':
# Forward
pred = model(batch)
# Loss function
loss = F.smooth_l1_loss(pred, gt_invd_idx, reduction='mean')
losses.append(loss.item())
# update parameters
optimizer.zero_grad()
loss.backward()
optimizer.step()
else:
with torch.no_grad():
pred = model(batch)
# Loss function
loss = F.smooth_l1_loss(pred, gt_invd_idx, reduction='mean')
losses.append(loss.item())
if show_metrics:
# save for evaluation
preds.append(pred.cpu())
gts.append(gt_invd_idx.cpu())
# update progress bar
display = OrderedDict(mode=f'{mode}', epoch=f"{epoch:>2}", loss=f"{losses[-1]:.4f}")
pbar.set_postfix(display)
# End of one epoch
ave_loss = sum(losses) / len(losses)
logger.info(f"Epoch:{epoch}, Loss average:{ave_loss:.4f}")
if show_metrics:
preds = torch.cat(preds)
gts = torch.cat(gts)
errors, error_names = evaluation_metrics(preds, gts, ndisp)
logger.info("Evaluation metrics: ")
logger.info("{:>8}, {:>8}, {:>8}, {:>8}, {:>8}".format(*error_names))
logger.info("{:8.4f}, {:8.4f}, {:8.4f}, {:8.4f}, {:8.4f}".format(*errors))
if depth_folder is not None:
for i in range(len(preds)):
fname = join(depth_folder, f'{i + 1:05}.npy')
np.save(fname, preds[i].numpy())
return ave_loss
def main():
global args, writer, logger
args = parser.parse_args()
logger.info('Arguments:')
logger.info(json.dumps(vars(args), indent=1))
# Dataset
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cpu')
if device.type != 'cpu':
cudnn.benchmark = True
logger.info(f"device:{device}")
# Load pretrained model
logger.info("=> loading checkpoints")
checkpoint = torch.load(args.pretrained)
ndisp = checkpoint['ndisp']
# min_depth = checkpoint['min_depth']
level = checkpoint['level']
logger.info(f'ndisp:{ndisp}')
logger.info(f'level:{level}')
logger.info('=> setting model')
model = IcoSweepNet(args.root_dir, ndisp, level, fov=args.fov)
model = model.to(device)
invd_0 = model.inv_depths[0]
invd_max = model.inv_depths[-1]
converter = InvDepthConverter(model.ndisp, invd_0, invd_max)
model.load_state_dict(checkpoint['state_dict'])
epoch = checkpoint['epoch'] - 1
logger.info("=> Pretrained model epoch {}".format(epoch))
logger.info('=> setting data loader')
transform = transforms.Compose([ToTensor(), Normalize()])
reduction = model.level - model.idepth_level
root_val_dataset = OmniStereoDataset(args.root_dir, args.val_list, fov=args.fov)
val_dataset = FisheyeToIcoDataset(root_val_dataset, root_val_dataset.ocams, root_val_dataset.pose_dict,
level=model.level, reduction=reduction, transform=transform)
logger.info(f'{len(val_dataset)} samples were found.')
val_loader = DataLoader(val_dataset, args.batch_size, shuffle=False, num_workers=args.workers)
model = nn.DataParallel(model)
# setup writer
log_folder = os.path.dirname(args.pretrained)
logger.info(f'=> save in checkpoint folder: {log_folder}')
base = os.path.splitext(os.path.basename(args.pretrained))[0]
root_dirname = args.root_dir.strip('/').split('/')[-1]
# setup logger file handler
handler = FileHandler(join(log_folder, f'eval_{root_dirname}_{base}.log'))
handler.setLevel(INFO)
logger.addHandler(handler)
logger.info('Start evaluation')
# ----------------------------
# evaluation
mode = 'eval'
depth_folder = join(log_folder, f'depth_{root_dirname}_{base}') if args.save_depth else None
ave_loss = run(epoch, mode, model, val_loader, converter, device, optimizer=None, show_metrics=True,
depth_folder=depth_folder)
logger.info('Finish training.')
if __name__ == '__main__':
main()