Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Want to change the address of my mapped token and redeploy with the following contract #91

Closed
ednawnika opened this issue Aug 12, 2021 · 2 comments

Comments

@ednawnika
Copy link

Token: AFTR
Token type
ERC20
Ethereum address
0x56dfa98f363edb99240b63f8a5141d8b64cfaf6e
Polygon address
0x228a22bf6da9353Abbe37a31cf85c02dfC432456
Decimals
8
Mintable
false

@ednawnika
Copy link
Author

Im attaching the required contracts

@ednawnika
Copy link
Author

// File: openzeppelin-solidity/contracts/GSN/Context.sol

pragma solidity ^0.5.0;

/*

  • @dev Provides information about the current execution context, including the

  • sender of the transaction and its data. While these are generally available

  • via msg.sender and msg.data, they should not be accessed in such a direct

  • manner, since when dealing with GSN meta-transactions the account sending and

  • paying for execution may not be the actual sender (as far as an application

  • is concerned).

  • This contract is only required for intermediate, library-like contracts.
    */
    contract Context {
    // Empty internal constructor, to prevent people from mistakenly deploying
    // an instance of this contract, which should be used via inheritance.
    constructor () internal { }
    // solhint-disable-previous-line no-empty-blocks

    function _msgSender() internal view returns (address payable) {
    return msg.sender;
    }

    function _msgData() internal view returns (bytes memory) {
    this; // silence state mutability warning without generating bytecode - see Allow comments to ignore compiler warnings. ethereum/solidity#2691
    return msg.data;
    }
    }

// File: openzeppelin-solidity/contracts/token/ERC20/IERC20.sol

pragma solidity ^0.5.0;

/**

  • @dev Interface of the ERC20 standard as defined in the EIP. Does not include

  • the optional functions; to access them see {ERC20Detailed}.
    /
    interface IERC20 {
    /
    *

    • @dev Returns the amount of tokens in existence.
      */
      function totalSupply() external view returns (uint256);

    /**

    • @dev Returns the amount of tokens owned by account.
      */
      function balanceOf(address account) external view returns (uint256);

    /**

    • @dev Moves amount tokens from the caller's account to recipient.
    • Returns a boolean value indicating whether the operation succeeded.
    • Emits a {Transfer} event.
      */
      function transfer(address recipient, uint256 amount) external returns (bool);

    /**

    • @dev Returns the remaining number of tokens that spender will be
    • allowed to spend on behalf of owner through {transferFrom}. This is
    • zero by default.
    • This value changes when {approve} or {transferFrom} are called.
      */
      function allowance(address owner, address spender) external view returns (uint256);

    /**

    • @dev Sets amount as the allowance of spender over the caller's tokens.
    • Returns a boolean value indicating whether the operation succeeded.
    • IMPORTANT: Beware that changing an allowance with this method brings the risk
    • that someone may use both the old and the new allowance by unfortunate
    • transaction ordering. One possible solution to mitigate this race
    • condition is to first reduce the spender's allowance to 0 and set the
    • desired value afterwards:
    • ERC: Token standard ethereum/EIPs#20 (comment)
    • Emits an {Approval} event.
      */
      function approve(address spender, uint256 amount) external returns (bool);

    /**

    • @dev Moves amount tokens from sender to recipient using the
    • allowance mechanism. amount is then deducted from the caller's
    • allowance.
    • Returns a boolean value indicating whether the operation succeeded.
    • Emits a {Transfer} event.
      */
      function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**

    • @dev Emitted when value tokens are moved from one account (from) to
    • another (to).
    • Note that value may be zero.
      */
      event Transfer(address indexed from, address indexed to, uint256 value);

    /**

    • @dev Emitted when the allowance of a spender for an owner is set by
    • a call to {approve}. value is the new allowance.
      */
      event Approval(address indexed owner, address indexed spender, uint256 value);
      }

// File: openzeppelin-solidity/contracts/math/SafeMath.sol

pragma solidity ^0.5.0;

/**

  • @dev Wrappers over Solidity's arithmetic operations with added overflow

  • checks.

  • Arithmetic operations in Solidity wrap on overflow. This can easily result

  • in bugs, because programmers usually assume that an overflow raises an

  • error, which is the standard behavior in high level programming languages.

  • SafeMath restores this intuition by reverting the transaction when an

  • operation overflows.

  • Using this library instead of the unchecked operations eliminates an entire

  • class of bugs, so it's recommended to use it always.
    /
    library SafeMath {
    /
    *

    • @dev Returns the addition of two unsigned integers, reverting on

    • overflow.

    • Counterpart to Solidity's + operator.

    • Requirements:

      • Addition cannot overflow.
        */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

      return c;
      }

    /**

    • @dev Returns the subtraction of two unsigned integers, reverting on
    • overflow (when the result is negative).
    • Counterpart to Solidity's - operator.
    • Requirements:
      • Subtraction cannot overflow.
        */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
        }

    /**

    • @dev Returns the subtraction of two unsigned integers, reverting with custom message on

    • overflow (when the result is negative).

    • Counterpart to Solidity's - operator.

    • Requirements:

      • Subtraction cannot overflow.
    • Available since v2.4.0.
      */
      function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
      require(b <= a, errorMessage);
      uint256 c = a - b;

      return c;
      }

    /**

    • @dev Returns the multiplication of two unsigned integers, reverting on

    • overflow.

    • Counterpart to Solidity's * operator.

    • Requirements:

    • uint256 c = a * b;
      require(c / a == b, "SafeMath: multiplication overflow");

      return c;
      }

    /**

    • @dev Returns the integer division of two unsigned integers. Reverts on
    • division by zero. The result is rounded towards zero.
    • Counterpart to Solidity's / operator. Note: this function uses a
    • revert opcode (which leaves remaining gas untouched) while Solidity
    • uses an invalid opcode to revert (consuming all remaining gas).
    • Requirements:
      • The divisor cannot be zero.
        */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
        }

    /**

    • @dev Returns the integer division of two unsigned integers. Reverts with custom message on

    • division by zero. The result is rounded towards zero.

    • Counterpart to Solidity's / operator. Note: this function uses a

    • revert opcode (which leaves remaining gas untouched) while Solidity

    • uses an invalid opcode to revert (consuming all remaining gas).

    • Requirements:

      • The divisor cannot be zero.
    • Available since v2.4.0.
      */
      function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
      // Solidity only automatically asserts when dividing by 0
      require(b > 0, errorMessage);
      uint256 c = a / b;
      // assert(a == b * c + a % b); // There is no case in which this doesn't hold

      return c;
      }

    /**

    • @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
    • Reverts when dividing by zero.
    • Counterpart to Solidity's % operator. This function uses a revert
    • opcode (which leaves remaining gas untouched) while Solidity uses an
    • invalid opcode to revert (consuming all remaining gas).
    • Requirements:
      • The divisor cannot be zero.
        */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
        }

    /**

    • @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
    • Reverts with custom message when dividing by zero.
    • Counterpart to Solidity's % operator. This function uses a revert
    • opcode (which leaves remaining gas untouched) while Solidity uses an
    • invalid opcode to revert (consuming all remaining gas).
    • Requirements:
      • The divisor cannot be zero.
    • Available since v2.4.0.
      */
      function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
      require(b != 0, errorMessage);
      return a % b;
      }
      }

// File: openzeppelin-solidity/contracts/token/ERC20/ERC20.sol

pragma solidity ^0.5.0;

/**

  • @dev Implementation of the {IERC20} interface.

  • This implementation is agnostic to the way tokens are created. This means

  • that a supply mechanism has to be added in a derived contract using {_mint}.

  • For a generic mechanism see {ERC20Mintable}.

  • TIP: For a detailed writeup see our guide

  • https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How

  • to implement supply mechanisms].

  • We have followed general OpenZeppelin guidelines: functions revert instead

  • of returning false on failure. This behavior is nonetheless conventional

  • and does not conflict with the expectations of ERC20 applications.

  • Additionally, an {Approval} event is emitted on calls to {transferFrom}.

  • This allows applications to reconstruct the allowance for all accounts just

  • by listening to said events. Other implementations of the EIP may not emit

  • these events, as it isn't required by the specification.

  • Finally, the non-standard {decreaseAllowance} and {increaseAllowance}

  • functions have been added to mitigate the well-known issues around setting

  • allowances. See {IERC20-approve}.
    */
    contract ERC20 is Context, IERC20 {
    using SafeMath for uint256;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    /**

    • @dev See {IERC20-totalSupply}.
      */
      function totalSupply() public view returns (uint256) {
      return _totalSupply;
      }

    /**

    • @dev See {IERC20-balanceOf}.
      */
      function balanceOf(address account) public view returns (uint256) {
      return _balances[account];
      }

    /**

    • @dev See {IERC20-transfer}.
    • Requirements:
      • recipient cannot be the zero address.
      • the caller must have a balance of at least amount.
        */
        function transfer(address recipient, uint256 amount) public returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
        }

    /**

    • @dev See {IERC20-allowance}.
      */
      function allowance(address owner, address spender) public view returns (uint256) {
      return _allowances[owner][spender];
      }

    /**

    • @dev See {IERC20-approve}.
    • Requirements:
      • spender cannot be the zero address.
        */
        function approve(address spender, uint256 amount) public returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
        }

    /**

    • @dev See {IERC20-transferFrom}.
    • Emits an {Approval} event indicating the updated allowance. This is not
    • required by the EIP. See the note at the beginning of {ERC20};
    • Requirements:
      • sender and recipient cannot be the zero address.
      • sender must have a balance of at least amount.
      • the caller must have allowance for sender's tokens of at least
    • amount.
      */
      function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
      _transfer(sender, recipient, amount);
      _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
      return true;
      }

    /**

    • @dev Atomically increases the allowance granted to spender by the caller.
    • This is an alternative to {approve} that can be used as a mitigation for
    • problems described in {IERC20-approve}.
    • Emits an {Approval} event indicating the updated allowance.
    • Requirements:
      • spender cannot be the zero address.
        */
        function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
        }

    /**

    • @dev Atomically decreases the allowance granted to spender by the caller.
    • This is an alternative to {approve} that can be used as a mitigation for
    • problems described in {IERC20-approve}.
    • Emits an {Approval} event indicating the updated allowance.
    • Requirements:
      • spender cannot be the zero address.
      • spender must have allowance for the caller of at least
    • subtractedValue.
      */
      function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
      _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
      return true;
      }

    /**

    • @dev Moves tokens amount from sender to recipient.

    • This is internal function is equivalent to {transfer}, and can be used to

    • e.g. implement automatic token fees, slashing mechanisms, etc.

    • Emits a {Transfer} event.

    • Requirements:

      • sender cannot be the zero address.
      • recipient cannot be the zero address.
      • sender must have a balance of at least amount.
        */
        function _transfer(address sender, address recipient, uint256 amount) internal {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

      _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
      _balances[recipient] = _balances[recipient].add(amount);
      emit Transfer(sender, recipient, amount);
      }

    /** @dev Creates amount tokens and assigns them to account, increasing

    • the total supply.

    • Emits a {Transfer} event with from set to the zero address.

    • Requirements

      • to cannot be the zero address.
        */
        function _mint(address account, uint256 amount) internal {
        require(account != address(0), "ERC20: mint to the zero address");

      _totalSupply = _totalSupply.add(amount);
      _balances[account] = _balances[account].add(amount);
      emit Transfer(address(0), account, amount);
      }

    /**

    • @dev Destroys amount tokens from account, reducing the

    • total supply.

    • Emits a {Transfer} event with to set to the zero address.

    • Requirements

      • account cannot be the zero address.
      • account must have at least amount tokens.
        */
        function _burn(address account, uint256 amount) internal {
        require(account != address(0), "ERC20: burn from the zero address");

      _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
      _totalSupply = _totalSupply.sub(amount);
      emit Transfer(account, address(0), amount);
      }

    /**

    • @dev Sets amount as the allowance of spender over the owners tokens.

    • This is internal function is equivalent to approve, and can be used to

    • e.g. set automatic allowances for certain subsystems, etc.

    • Emits an {Approval} event.

    • Requirements:

      • owner cannot be the zero address.
      • spender cannot be the zero address.
        */
        function _approve(address owner, address spender, uint256 amount) internal {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

      _allowances[owner][spender] = amount;
      emit Approval(owner, spender, amount);
      }

    /**

    • @dev Destroys amount tokens from account.amount is then deducted
    • from the caller's allowance.
    • See {_burn} and {_approve}.
      */
      function _burnFrom(address account, uint256 amount) internal {
      _burn(account, amount);
      _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
      }
      }

// File: openzeppelin-solidity/contracts/access/Roles.sol

pragma solidity ^0.5.0;

/**

  • @title Roles

  • @dev Library for managing addresses assigned to a Role.
    */
    library Roles {
    struct Role {
    mapping (address => bool) bearer;
    }

    /**

    • @dev Give an account access to this role.
      */
      function add(Role storage role, address account) internal {
      require(!has(role, account), "Roles: account already has role");
      role.bearer[account] = true;
      }

    /**

    • @dev Remove an account's access to this role.
      */
      function remove(Role storage role, address account) internal {
      require(has(role, account), "Roles: account does not have role");
      role.bearer[account] = false;
      }

    /**

    • @dev Check if an account has this role.
    • @return bool
      */
      function has(Role storage role, address account) internal view returns (bool) {
      require(account != address(0), "Roles: account is the zero address");
      return role.bearer[account];
      }
      }

// File: openzeppelin-solidity/contracts/access/roles/MinterRole.sol

pragma solidity ^0.5.0;

contract MinterRole is Context {
using Roles for Roles.Role;

event MinterAdded(address indexed account);
event MinterRemoved(address indexed account);

Roles.Role private _minters;

constructor () internal {
    _addMinter(_msgSender());
}

modifier onlyMinter() {
    require(isMinter(_msgSender()), "MinterRole: caller does not have the Minter role");
    _;
}

function isMinter(address account) public view returns (bool) {
    return _minters.has(account);
}

function addMinter(address account) public onlyMinter {
    _addMinter(account);
}

function renounceMinter() public {
    _removeMinter(_msgSender());
}

function _addMinter(address account) internal {
    _minters.add(account);
    emit MinterAdded(account);
}

function _removeMinter(address account) internal {
    _minters.remove(account);
    emit MinterRemoved(account);
}

}

// File: original_contracts/EIP712Base.sol

pragma solidity 0.5.17;

contract EIP712Base {

struct EIP712Domain {
    string name;
    string version;
    uint256 chainId;
    address verifyingContract;
}

bytes32 internal constant EIP712_DOMAIN_TYPEHASH = keccak256(bytes("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"));

bytes32 internal domainSeperator;

uint256 private _chainid;

constructor(string memory name, string memory version, uint256 chainid) public {
  _chainid = chainid;
  
  domainSeperator = keccak256(abi.encode(
		EIP712_DOMAIN_TYPEHASH,
		keccak256(bytes(name)),
		keccak256(bytes(version)),
		getChainID(),
		address(this)
	));
}

function getChainID() public view returns (uint256 id) {
	    return _chainid;
}

function getDomainSeperator() private view returns(bytes32) {
	return domainSeperator;
}

/**
* Accept message hash and returns hash message in EIP712 compatible form
* So that it can be used to recover signer from signature signed using EIP712 formatted data
* https://eips.ethereum.org/EIPS/eip-712
* "\\x19" makes the encoding deterministic
* "\\x01" is the version byte to make it compatible to EIP-191
*/
function toTypedMessageHash(bytes32 messageHash) internal view returns(bytes32) {
    return keccak256(abi.encodePacked("\x19\x01", getDomainSeperator(), messageHash));
}

}

// File: original_contracts/EIP712MetaTransaction.sol

pragma solidity 0.5.17;

contract EIP712MetaTransaction is EIP712Base {
using SafeMath for uint256;
bytes32 private constant META_TRANSACTION_TYPEHASH = keccak256(
bytes(
"MetaTransaction(uint256 nonce,address from,bytes functionSignature)"
)
);

event MetaTransactionExecuted(
    address userAddress,
    address payable relayerAddress,
    bytes functionSignature
);
mapping(address => uint256) nonces;

/*
 * Meta transaction structure.
 * No point of including value field here as if user is doing value transfer then he has the funds to pay for gas
 * He should call the desired function directly in that case.
 */
struct MetaTransaction {
    uint256 nonce;
    address from;
    bytes functionSignature;
}

constructor(string memory name, string memory version, uint256 chainid)
    public
    EIP712Base(name, version, chainid)
{}

function executeMetaTransaction(
    address userAddress,
    bytes memory functionSignature,
    bytes32 sigR,
    bytes32 sigS,
    uint8 sigV
) public payable returns (bytes memory) {
    MetaTransaction memory metaTx = MetaTransaction({
        nonce: nonces[userAddress],
        from: userAddress,
        functionSignature: functionSignature
    });
    require(
        verify(userAddress, metaTx, sigR, sigS, sigV),
        "Signer and signature do not match"
    );
    // Append userAddress and relayer address at the end to extract it from calling context
    (bool success, bytes memory returnData) = address(this).call(
        abi.encodePacked(functionSignature, userAddress)
    );

    require(success, "Function call not successfull");
    nonces[userAddress] = nonces[userAddress].add(1);
    emit MetaTransactionExecuted(
        userAddress,
        msg.sender,
        functionSignature
    );
    return returnData;
}

function hashMetaTransaction(MetaTransaction memory metaTx)
    internal
    view
    returns (bytes32)
{
    return
        keccak256(
            abi.encode(
                META_TRANSACTION_TYPEHASH,
                metaTx.nonce,
                metaTx.from,
                keccak256(metaTx.functionSignature)
            )
        );
}

function getNonce(address user) public view returns (uint256 nonce) {
    nonce = nonces[user];
}

function verify(
    address signer,
    MetaTransaction memory metaTx,
    bytes32 sigR,
    bytes32 sigS,
    uint8 sigV
) internal view returns (bool) {
    return
        signer ==
        ecrecover(
            toTypedMessageHash(hashMetaTransaction(metaTx)),
            sigV,
            sigR,
            sigS
        );
}

function _msgSender() internal view returns (address payable sender) {
    if(msg.sender == address(this)) {
        bytes memory array = msg.data;
        uint256 index = msg.data.length;
        assembly {
            // Load the 32 bytes word from memory with the address on the lower 20 bytes, and mask those.
            sender := and(mload(add(array, index)), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    } else {
        sender = msg.sender;
    }
    return sender;
}

}

// File: original_contracts/interfaces/IFeeSettings.sol

pragma solidity 0.5.17;

interface IFeeSettings {

function getFeeWallet() external view returns(address);

function getFeePercentage() external view returns(uint256);

function getMinimumFee() external view returns(uint256);

function changeFeeWallet(address feeWallet) external;

function changeFeePercentage(uint256 feePercentage) external;

function changeMinimuFee(uint256 minimumFee) external;

}

// File: original_contracts/Token.sol

pragma solidity 0.5.17;

contract Token is ERC20, MinterRole, EIP712MetaTransaction {

string public name;
string public symbol;
uint8 public decimals;

mapping(address=>uint256) public userLastActivityBlock;

//Number of blocks after which points will be expired for the user, if no activity is done within that time period
uint256 public expiryThreshold;

IFeeSettings public feeSettings;

event MintWithId(
    address indexed minter,
    address indexed account,
    uint256 amount,
    string id
);

event BurnWithId(
    address indexed burner,
    uint256 amount,
    string id
);

event ExpiryThresholdChanged(
    uint256 newTHreshold
);

event FeeTaken(address indexed receiver, uint256 amount);

constructor(
    string memory _name,
    string memory _symbol,
    uint8 _decimals,
    address _feeSettings,
    uint256 chainid
)
    public
    EIP712MetaTransaction("Afrofuture", "0.1", chainid)
{
    name = _name;
    symbol = _symbol;
    decimals = _decimals;
    feeSettings = IFeeSettings(_feeSettings);
}

function changeExpiryThreshold(uint256 threshold) external onlyMinter {
    expiryThreshold = threshold;
    emit ExpiryThresholdChanged(threshold);
}

function mintWithId(
    address account,
    uint256 amount,
    string calldata id
)
    external
    onlyMinter
    returns (bool)
{
    checkAndBurnExpiredTokens(account);

    userLastActivityBlock[account] = block.number;

    _mint(account, amount);
    _takeFee(amount);
    emit MintWithId(
        _msgSender(),
        account,
        amount,
        id
    );
    return true;
}

function burnWithId(
    uint256 amount,
    string calldata id
)
    external
{
    bool expired = checkAndBurnExpiredTokens(_msgSender());

    if(expired) {
        return;
    }

    userLastActivityBlock[_msgSender()] = block.number;
    _burn(_msgSender(), amount);

    emit BurnWithId(
        _msgSender(),
        amount,
        id
    );
}

function checkAndBurnExpiredTokens(address user) public returns(bool) {
    if (isExpired(user)) {
        _burn(user, balanceOf(user));

        emit BurnWithId(
            user,
            balanceOf(user),
            "EXPIRED"
        );
        return true;
    }
    else {
        return false;
    }
}

function isExpired(address user) public returns(bool) {
    if ( expiryThreshold > 0 && balanceOf(user) > 0 && userLastActivityBlock[user].add(expiryThreshold) < block.number) {
        return true;
    }
    else {
        return false;
    }
}

function _transfer(
    address sender,
    address recipient,
    uint256 amount
)
    internal
{
    checkAndBurnExpiredTokens(sender);
    checkAndBurnExpiredTokens(recipient);
    userLastActivityBlock[sender] = block.number;
    userLastActivityBlock[recipient] = block.number;

    super._transfer(sender, recipient, amount);
}

function _takeFee(uint256 amount) private {
    if(amount == 0){
        return;
    }

    uint256 fee = amount.mul(feeSettings.getFeePercentage()).div(10000);
    if (fee < feeSettings.getMinimumFee()) {
        fee = feeSettings.getMinimumFee();
    }

    if(fee > 0) {
        _mint(feeSettings.getFeeWallet(), fee);
        emit FeeTaken(feeSettings.getFeeWallet(), fee);
    }
    
}

}

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant