-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathftc.v
1010 lines (966 loc) · 44 KB
/
ftc.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* mathcomp analysis (c) 2023 Inria and AIST. License: CeCILL-C. *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect ssralg ssrnum ssrint interval finmap.
From mathcomp Require Import mathcomp_extra boolp classical_sets functions.
From mathcomp Require Import cardinality fsbigop .
Require Import signed reals ereal topology normedtype sequences real_interval.
Require Import esum measure lebesgue_measure numfun realfun lebesgue_integral.
Require Import derive charge.
(**md**************************************************************************)
(* # Fundamental Theorem of Calculus for the Lebesgue Integral *)
(* *)
(* NB: See CONTRIBUTING.md for an introduction to HB concepts and commands. *)
(* *)
(* This file provides a proof of the first fundamental theorem of calculus *)
(* for the Lebesgue integral. We derive from this theorem a corollary to *)
(* compute the definite integral of continuous functions. *)
(* *)
(* parameterized_integral mu a x f := \int[mu]_(t \in `[a, x] f t) *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldTopology.Exports.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Section FTC.
Context {R : realType}.
Notation mu := (@lebesgue_measure R).
Local Open Scope ereal_scope.
Implicit Types (f : R -> R) (a : itv_bound R).
Let FTC0 f a : mu.-integrable setT (EFin \o f) ->
let F x := (\int[mu]_(t in [set` Interval a (BRight x)]) f t)%R in
forall x, a < BRight x -> lebesgue_pt f x ->
h^-1 *: (F (h + x) - F x) @[h --> 0%R^'] --> f x.
Proof.
move=> intf F x ax fx.
have locf : locally_integrable setT f.
by apply: open_integrable_locally => //; exact: openT.
apply: cvg_at_right_left_dnbhs.
- apply/cvg_at_rightP => d [d_gt0 d0].
pose E x n := `[x, x + d n[%classic%R.
have muE y n : mu (E y n) = (d n)%:E.
rewrite /E lebesgue_measure_itv/= lte_fin ltrDl d_gt0.
by rewrite -EFinD addrAC subrr add0r.
have nice_E y : nicely_shrinking y (E y).
split=> [n|]; first exact: measurable_itv.
exists (2, fun n => PosNum (d_gt0 n)); split => //= [n z|n].
rewrite /E/= in_itv/= /ball/= ltr_distlC => /andP[yz ->].
by rewrite (lt_le_trans _ yz)// ltrBlDr ltrDl.
rewrite (lebesgue_measure_ball _ (ltW _))// -/mu muE -EFinM lee_fin.
by rewrite mulr_natl.
have ixdf n : \int[mu]_(t in [set` Interval a (BRight (x + d n))]) (f t)%:E -
\int[mu]_(t in [set` Interval a (BRight x)]) (f t)%:E =
\int[mu]_(y in E x n) (f y)%:E.
rewrite -[in X in X - _]integral_itv_bndo_bndc//=; last first.
by case: locf => + _ _; exact: measurable_funS.
rewrite (@itv_bndbnd_setU _ _ _ (BLeft x))//=; last 2 first.
by case: a ax F => [[|] a|[|]]// /ltW.
by rewrite bnd_simp lerDl ltW.
rewrite integral_setU_EFin//=.
- rewrite addeAC -[X in _ - X]integral_itv_bndo_bndc//=; last first.
by case: locf => + _ _; exact: measurable_funS.
rewrite subee ?add0e//.
by apply: integral_fune_fin_num => //; exact: integrableS intf.
- by case: locf => + _ _; exact: measurable_funS.
- apply/disj_setPRL => z/=.
rewrite /E /= !in_itv/= => /andP[xz zxdn].
move: a ax {F} => [[|] t/=|[_ /=|//]].
- rewrite lte_fin => tx.
by apply/negP; rewrite negb_and -leNgt xz orbT.
- rewrite lte_fin => tx.
by apply/negP; rewrite negb_and -!leNgt xz orbT.
- by apply/negP; rewrite -leNgt.
rewrite [f in f n @[n --> _] --> _](_ : _ =
fun n => (d n)^-1 *: fine (\int[mu]_(t in E x n) (f t)%:E)); last first.
apply/funext => n; congr (_ *: _); rewrite -fineB/=.
by rewrite /= (addrC (d n) x) ixdf.
by apply: integral_fune_fin_num => //; exact: integrableS intf.
by apply: integral_fune_fin_num => //; exact: integrableS intf.
have := nice_lebesgue_differentiation nice_E locf fx.
rewrite {ixdf} -/mu.
rewrite [g in g n @[n --> _] --> _ -> _](_ : _ =
fun n => (d n)^-1%:E * \int[mu]_(y in E x n) (f y)%:E); last first.
by apply/funext => n; rewrite muE.
move/fine_cvgP => [_ /=].
set g := _ \o _ => gf.
set h := (f in f n @[n --> \oo] --> _).
suff : g = h by move=> <-.
apply/funext => n.
rewrite /g /h /= fineM//.
apply: integral_fune_fin_num => //; first exact: (nice_E _).1.
by apply: integrableS intf => //; exact: (nice_E _).1.
- apply/cvg_at_leftP => d [d_gt0 d0].
have {}Nd_gt0 n : (0 < - d n)%R by rewrite ltrNr oppr0.
pose E x n := `]x + d n, x]%classic%R.
have muE y n : mu (E y n) = (- d n)%:E.
rewrite /E lebesgue_measure_itv/= lte_fin -ltrBrDr.
by rewrite ltrDl Nd_gt0 -EFinD opprD addrA subrr add0r.
have nice_E y : nicely_shrinking y (E y).
split=> [n|]; first exact: measurable_itv.
exists (2, (fun n => PosNum (Nd_gt0 n))); split => //=.
by rewrite -oppr0; exact: cvgN.
move=> n z.
rewrite /E/= in_itv/= /ball/= => /andP[yz zy].
by rewrite ltr_distlC opprK yz /= (le_lt_trans zy)// ltrDl.
move=> n.
rewrite lebesgue_measure_ball//; last exact: ltW.
by rewrite -/mu muE -EFinM lee_fin mulr_natl.
have ixdf : {near \oo,
(fun n => \int[mu]_(t in [set` Interval a (BRight (x + d n))]) (f t)%:E -
\int[mu]_(t in [set` Interval a (BRight x)]) (f t)%:E) =1
(fun n => - \int[mu]_(y in E x n) (f y)%:E)}.
case: a ax {F}; last first.
move=> [_|//].
apply: nearW => n.
rewrite -[in LHS]integral_itv_bndo_bndc//=; last first.
by case: locf => + _ _; exact: measurable_funS.
rewrite -/mu -[LHS]oppeK; congr oppe.
rewrite oppeB; last first.
rewrite fin_num_adde_defl// fin_numN//.
by apply: integral_fune_fin_num => //; exact: integrableS intf.
rewrite addeC.
rewrite (_ : `]-oo, x] = `]-oo, (x + d n)%R] `|` E x n)%classic; last first.
by rewrite -itv_bndbnd_setU//= bnd_simp ler_wnDr// ltW.
rewrite integral_setU_EFin//=.
- rewrite addeAC.
rewrite -[X in X - _]integral_itv_bndo_bndc//; last first.
by case: locf => + _ _; exact: measurable_funS.
rewrite subee ?add0e//.
by apply: integral_fune_fin_num => //; exact: integrableS intf.
- exact: (nice_E _).1.
- by case: locf => + _ _; exact: measurable_funS.
- apply/disj_setPLR => z/=.
rewrite /E /= !in_itv/= leNgt => xdnz.
by apply/negP; rewrite negb_and xdnz.
move=> b a ax.
move/cvgrPdist_le : d0.
move/(_ (x - a)%R); rewrite subr_gt0 => /(_ ax)[m _ /=] h.
near=> n.
have mn : (m <= n)%N by near: n; exists m.
rewrite -[in X in X - _]integral_itv_bndo_bndc//=; last first.
by case: locf => + _ _; exact: measurable_funS.
rewrite -/mu -[LHS]oppeK; congr oppe.
rewrite oppeB; last first.
rewrite fin_num_adde_defl// fin_numN//.
by apply: integral_fune_fin_num => //; exact: integrableS intf.
rewrite addeC.
rewrite (@itv_bndbnd_setU _ _ _ (BRight (x - - d n)%R))//; last 2 first.
case: b in ax * => /=; rewrite bnd_simp.
rewrite lerBrDl addrC -lerBrDl.
by have := h _ mn; rewrite sub0r gtr0_norm.
rewrite lerBrDl -lerBrDr.
by have := h _ mn; rewrite sub0r gtr0_norm.
by rewrite opprK bnd_simp -lerBrDl subrr ltW.
rewrite integral_setU_EFin//=.
- rewrite addeAC -[X in X - _]integral_itv_bndo_bndc//; last first.
by case: locf => + _ _; exact: measurable_funS.
rewrite opprK subee ?add0e//.
by apply: integral_fune_fin_num => //; exact: integrableS intf.
- by case: locf => + _ _; exact: measurable_funS.
- apply/disj_setPLR => z/=.
rewrite /E /= !in_itv/= => /andP[az zxdn].
by apply/negP; rewrite negb_and -leNgt zxdn.
suff: ((d n)^-1 * - fine (\int[mu]_(y in E x n) (f y)%:E))%R
@[n --> \oo] --> f x.
apply: cvg_trans; apply: near_eq_cvg; near=> n; congr (_ *: _).
rewrite /F -fineN -fineB; last 2 first.
by apply: integral_fune_fin_num => //; exact: integrableS intf.
by apply: integral_fune_fin_num => //; exact: integrableS intf.
by congr fine => /=; apply/esym; rewrite (addrC _ x); near: n.
have := nice_lebesgue_differentiation nice_E locf fx.
rewrite {ixdf} -/mu.
move/fine_cvgP => [_ /=].
set g := _ \o _ => gf.
rewrite (@eq_cvg _ _ _ _ g)// => n.
rewrite /g /= fineM//=; last first.
apply: integral_fune_fin_num => //; first exact: (nice_E _).1.
by apply: integrableS intf => //; exact: (nice_E _).1.
by rewrite muE/= invrN mulNr -mulrN.
Unshelve. all: by end_near. Qed.
Let FTC0_restrict f a x (u : R) : (x < u)%R ->
mu.-integrable [set` Interval a (BRight u)] (EFin \o f) ->
let F y := (\int[mu]_(t in [set` Interval a (BRight y)]) f t)%R in
a < BRight x -> lebesgue_pt f x ->
h^-1 *: (F (h + x) - F x) @[h --> 0%R^'] --> f x.
Proof.
move=> xu + F ax fx.
rewrite integrable_mkcond//= (restrict_EFin f) => intf.
have /(@FTC0 _ _ intf _ ax) : lebesgue_pt (f \_ [set` Interval a (BRight u)]) x.
exact: lebesgue_pt_restrict.
rewrite patchE mem_set; last first.
rewrite /= in_itv/= (ltW xu) andbT.
by move: a ax {F intf} => [[a|]|[]]//=; rewrite lte_fin => /ltW.
apply: cvg_trans; apply: near_eq_cvg; near=> r; congr (_ *: (_ - _)).
- apply: eq_Rintegral => y yaxr; rewrite patchE mem_set//=.
move: yaxr; rewrite /= !in_itv/= inE/= in_itv/= => /andP[->/=].
move=> /le_trans; apply; rewrite -lerBrDr.
have [r0|r0] := leP r 0%R; first by rewrite (le_trans r0)// subr_ge0 ltW.
by rewrite -(gtr0_norm r0); near: r; apply: dnbhs0_le; rewrite subr_gt0.
- apply: eq_Rintegral => y yaxr; rewrite patchE mem_set//=.
move: yaxr => /=; rewrite !in_itv/= inE/= in_itv/= => /andP[->/=].
by move=> /le_trans; apply; exact/ltW.
Unshelve. all: by end_near. Qed.
(* NB: right-closed interval *)
Lemma FTC1_lebesgue_pt f a x (u : R) : (x < u)%R ->
mu.-integrable [set` Interval a (BRight u)] (EFin \o f) ->
let F y := (\int[mu]_(t in [set` Interval a (BRight y)]) (f t))%R in
a < BRight x -> lebesgue_pt f x ->
derivable F x 1 /\ F^`() x = f x.
Proof.
move=> xu intf F ax fx; split; last first.
by apply/cvg_lim; [exact: Rhausdorff|exact: (@FTC0_restrict _ _ _ u)].
apply/cvg_ex; exists (f x).
have /= := FTC0_restrict xu intf ax fx.
set g := (f in f n @[n --> _] --> _ -> _).
set h := (f in _ -> f n @[n --> _] --> _).
suff : g = h by move=> <-.
by apply/funext => y;rewrite /g /h /= [X in F (X + _)]mulr1.
Qed.
Corollary FTC1 f a :
(forall y, mu.-integrable [set` Interval a (BRight y)] (EFin \o f)) ->
locally_integrable [set: R] f ->
let F x := (\int[mu]_(t in [set` Interval a (BRight x)]) (f t))%R in
{ae mu, forall x, a < BRight x -> derivable F x 1 /\ F^`() x = f x}.
Proof.
move=> intf locf F; move: (locf) => /lebesgue_differentiation.
apply: filterS; first exact: (ae_filter_ringOfSetsType mu).
move=> i fi ai.
by apply: (@FTC1_lebesgue_pt _ _ _ (i + 1)%R) => //; rewrite ltrDl.
Qed.
Corollary FTC1Ny f :
(forall y, mu.-integrable `]-oo, y] (EFin \o f)) ->
locally_integrable [set: R] f ->
let F x := (\int[mu]_(t in [set` `]-oo, x]]) (f t))%R in
{ae mu, forall x, derivable F x 1 /\ F^`() x = f x}.
Proof.
move=> intf locf F; have := FTC1 intf locf.
apply: filterS; first exact: (ae_filter_ringOfSetsType mu).
by move=> r /=; apply; rewrite ltNyr.
Qed.
Let itv_continuous_lebesgue_pt f a x (u : R) : (x < u)%R ->
measurable_fun [set` Interval a (BRight u)] f ->
a < BRight x ->
{for x, continuous f} -> lebesgue_pt f x.
Proof.
move=> xu fi + fx.
move: a fi => [b a fi /[1!(@lte_fin R)] ax|[|//] fi _].
- near (0%R:R)^'+ => e; apply: (@continuous_lebesgue_pt _ _ _ (ball x e)) => //.
+ exact: ball_open_nbhs.
+ exact: measurable_ball.
+ apply: measurable_funS fi => //; rewrite ball_itv.
apply: (@subset_trans _ `](x - e)%R, u]) => //.
apply: subset_itvl; rewrite bnd_simp -lerBrDl.
by near: e; apply: nbhs_right_ltW; rewrite subr_gt0.
apply: subset_itvr; rewrite bnd_simp lerBrDr -lerBrDl.
by near: e; apply: nbhs_right_ltW; rewrite subr_gt0.
- near (0%R:R)^'+ => e; apply: (@continuous_lebesgue_pt _ _ _ (ball x e)) => //.
+ exact: ball_open_nbhs.
+ exact: measurable_ball.
+ apply: measurable_funS fi => //; rewrite ball_itv.
apply: (@subset_trans _ `](x - e)%R, u]) => //.
apply: subset_itvl; rewrite bnd_simp -lerBrDl.
by near: e; apply: nbhs_right_ltW; rewrite subr_gt0.
exact: subset_itvr.
Unshelve. all: by end_near. Qed.
Corollary continuous_FTC1 f a x (u : R) : (x < u)%R ->
mu.-integrable [set` Interval a (BRight u)] (EFin \o f) ->
let F x := (\int[mu]_(t in [set` Interval a (BRight x)]) (f t))%R in
a < BRight x -> {for x, continuous f} ->
derivable F x 1 /\ F^`() x = f x.
Proof.
move=> xu fi F ax fx; suff lfx : lebesgue_pt f x.
have /(_ ax lfx)[dfx f'xE] := @FTC1_lebesgue_pt _ a _ _ xu fi.
by split; [exact: dfx|rewrite f'xE].
apply: itv_continuous_lebesgue_pt xu _ ax fx.
by move/integrableP : fi => -[/EFin_measurable_fun].
Qed.
Corollary continuous_FTC1_closed f (a x : R) (u : R) : (x < u)%R ->
mu.-integrable `[a, u] (EFin \o f) ->
let F x := (\int[mu]_(t in [set` `[a, x]]) (f t))%R in
(a < x)%R -> {for x, continuous f} ->
derivable F x 1 /\ F^`() x = f x.
Proof. by move=> xu locf F ax fx; exact: (@continuous_FTC1 _ _ _ u). Qed.
End FTC.
Definition parameterized_integral {R : realType}
(mu : {measure set (g_sigma_algebraType (R.-ocitv.-measurable)) -> \bar R})
a x (f : R -> R) : R :=
(\int[mu]_(t in `[a, x]) f t)%R.
Section parameterized_integral_continuous.
Context {R : realType}.
Notation mu := (@lebesgue_measure R).
Let int := (parameterized_integral mu).
Lemma parameterized_integral_near_left (a b : R) (e : R) (f : R -> R) :
a < b -> 0 < e -> mu.-integrable `[a, b] (EFin \o f) ->
\forall c \near a, a <= c -> `| int a c f | < e.
Proof.
move=> ab e0 intf.
have : mu.-integrable setT (EFin \o f \_ `[a, b]).
by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setTI.
move=> /integral_normr_continuous /(_ _ e0)[d [d0 /=]] ifab.
near=> c => ac.
have /ifab : (mu `[a, c] < d%:E)%E.
rewrite lebesgue_measure_itv/= lte_fin.
case: ifPn => // {}ac; rewrite -EFinD lte_fin.
by move: ac; near: c; exact: nbhs_right_ltDr.
move=> /(_ (measurable_itv _)) {ifab}.
apply: le_lt_trans.
have acbc : `[a, c] `<=` `[a, b].
by apply: subset_itvl; rewrite bnd_simp; move: ac; near: c; exact: nbhs_le.
rewrite -lee_fin fineK; last first.
apply: integral_fune_fin_num => //=.
rewrite (_ : (fun _ => _) = abse \o ((EFin \o f) \_ `[a, b])); last first.
by apply/funext => x /=; rewrite restrict_EFin.
apply/integrable_abse/integrable_restrict => //=.
by rewrite setIidl//; exact: integrableS intf.
rewrite [leRHS]integralEpatch//= [in leRHS]integralEpatch//=.
under [in leRHS]eq_integral.
move=> /= x xac.
rewrite -patch_setI setIid restrict_EFin/= restrict_normr/=.
rewrite -patch_setI setIidl//.
over.
rewrite /= [leRHS](_ : _ = \int[mu]_(x in `[a, c]) `| f x |%:E)%E; last first.
rewrite [RHS]integralEpatch//=; apply: eq_integral => x xac/=.
by rewrite restrict_EFin/= restrict_normr.
rewrite /int /parameterized_integral /=.
apply: (@le_trans _ _ ((\int[mu]_(t in `[a, c]) `|f t|))%:E).
by apply: le_normr_integral => //; exact: integrableS intf.
set rhs : \bar R := leRHS.
have [->|rhsoo] := eqVneq rhs +oo%E; first by rewrite leey.
rewrite /rhs /Rintegral -/rhs.
rewrite fineK// fin_numE rhsoo andbT -ltNye (@lt_le_trans _ _ 0%E)//.
exact: integral_ge0.
Unshelve. all: by end_near. Qed.
Lemma parameterized_integral_cvg_left a b (f : R -> R) : a < b ->
mu.-integrable `[a, b] (EFin \o f) ->
int a x f @[x --> a] --> 0.
Proof.
move=> ab intf; pose fab := f \_ `[a, b].
have intfab : mu.-integrable `[a, b] (EFin \o fab).
by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setIidr.
apply/cvgrPdist_le => /= e e0; rewrite near_simpl; near=> x.
rewrite {1}/int /parameterized_integral sub0r normrN.
have [|xa] := leP a x.
move=> ax; apply/ltW; move: ax.
by near: x; exact: (@parameterized_integral_near_left _ b).
by rewrite set_itv_ge ?Rintegral_set0 ?normr0 ?(ltW e0)// -leNgt bnd_simp.
Unshelve. all: by end_near. Qed.
Lemma parameterized_integral_cvg_at_left a b (f : R -> R) : a < b ->
mu.-integrable `[a, b] (EFin \o f) ->
int a x f @[x --> b^'-] --> int a b f.
Proof.
move=> ab intf; pose fab := f \_ `[a, b].
have /= int_normr_cont : forall e : R, 0 < e ->
exists d : R, 0 < d /\
forall A, measurable A -> (mu A < d%:E)%E -> \int[mu]_(x in A) `|fab x| < e.
rewrite /= => e e0; apply: integral_normr_continuous => //=.
by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setTI.
have intfab : mu.-integrable `[a, b] (EFin \o fab).
by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setIidr.
rewrite /int /parameterized_integral; apply/cvgrPdist_le => /= e e0.
have [d [d0 /= {}int_normr_cont]] := int_normr_cont _ e0.
near=> x.
rewrite [in X in X - _](@itv_bndbnd_setU _ _ _ (BRight x))//;
[|by rewrite bnd_simp ltW..].
rewrite Rintegral_setU_EFin//=; last 2 first.
rewrite -itv_bndbnd_setU// ?bnd_simp; last 2 first.
by near: x; exact: nbhs_left_ge.
exact/ltW.
apply/disj_set2P; rewrite -subset0 => z/=; rewrite !in_itv/= => -[/andP[_]].
by rewrite leNgt => /negbTE ->.
have xbab : `]x, b] `<=` `[a, b].
by apply: subset_itvr; rewrite bnd_simp; near: x; exact: nbhs_left_ge.
rewrite -addrAC subrr add0r (le_trans (le_normr_integral _ _))//.
exact: integrableS intf.
rewrite [leLHS](_ : _ = (\int[mu]_(t in `]x, b]) normr (fab t)))//; last first.
apply: eq_Rintegral => //= z; rewrite inE/= in_itv/= => /andP[xz zb].
rewrite /fab patchE ifT// inE/= in_itv/= zb andbT (le_trans _ (ltW xz))//.
by near: x; exact: nbhs_left_ge.
apply/ltW/int_normr_cont => //.
rewrite lebesgue_measure_itv/= lte_fin.
rewrite ifT// -EFinD lte_fin.
near: x; exists d => // z; rewrite /ball_/= => + zb.
by rewrite gtr0_norm// ?subr_gt0.
Unshelve. all: by end_near. Qed.
Lemma parameterized_integral_continuous a b (f : R -> R) : a < b ->
mu.-integrable `[a, b] (EFin \o f) ->
{within `[a, b], continuous (fun x => int a x f)}.
Proof.
move=> ab intf; apply/(continuous_within_itvP _ ab); split; first last.
exact: parameterized_integral_cvg_at_left.
apply/cvg_at_right_filter.
rewrite {2}/int /parameterized_integral interval_set1 Rintegral_set1.
exact: (parameterized_integral_cvg_left ab).
pose fab := f \_ `[a, b].
have /= int_normr_cont : forall e : R, 0 < e ->
exists d : R, 0 < d /\
forall A, measurable A -> (mu A < d%:E)%E -> \int[mu]_(x in A) `|fab x| < e.
rewrite /= => e e0; apply: integral_normr_continuous => //=.
by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setTI.
have intfab : mu.-integrable `[a, b] (EFin \o fab).
by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setIidr.
rewrite /int /parameterized_integral => z; rewrite in_itv/= => /andP[az zb].
apply/cvgrPdist_le => /= e e0.
rewrite near_simpl.
have [d [d0 /= {}int_normr_cont]] := int_normr_cont _ e0.
near=> x.
have [xz|xz|->] := ltgtP x z; last by rewrite subrr normr0 ltW.
- have ax : a < x.
move: xz; near: x.
exists `|z - a| => /=; first by rewrite gtr0_norm ?subr_gt0.
move=> y /= + yz.
do 2 rewrite gtr0_norm ?subr_gt0//.
rewrite ltrBlDr -ltrBlDl; apply: le_lt_trans.
by rewrite opprB addrCA subrr addr0.
rewrite Rintegral_itvB//; last 3 first.
by apply: integrableS intf => //; apply: subset_itvl; exact: ltW.
by rewrite bnd_simp ltW.
exact: ltW.
have xzab : `]x, z] `<=` `[a, b].
by apply: subset_itvScc; rewrite bnd_simp; exact/ltW.
apply: (le_trans (le_normr_integral _ _)) => //; first exact: integrableS intf.
rewrite -(setIidl xzab) Rintegral_mkcondr/=.
under eq_Rintegral do rewrite restrict_normr.
apply/ltW/int_normr_cont => //.
rewrite lebesgue_measure_itv/= lte_fin xz -EFinD lte_fin ltrBlDl.
move: xz; near: x.
exists (d / 2); first by rewrite /= divr_gt0.
move=> x/= /[swap] xz.
rewrite gtr0_norm ?subr_gt0// ltrBlDl => /lt_le_trans; apply.
by rewrite lerD2l ler_pdivrMr// ler_pMr// ler1n.
+ have ax : a < x by rewrite (lt_trans az).
have xb : x < b.
move: xz; near: x.
exists `|b - z|; first by rewrite /= gtr0_norm ?subr_gt0.
move=> y /= + yz.
by rewrite ltr0_norm ?subr_lt0// gtr0_norm ?subr_gt0// opprB ltrBlDr subrK.
rewrite -opprB normrN Rintegral_itvB ?bnd_simp; [| |exact/ltW..]; last first.
by apply: integrableS intf => //; apply: subset_itvl; exact: ltW.
have zxab : `[z, x] `<=` `[a, b] by apply: subset_itvScc; exact/ltW.
have intzxf : mu.-integrable `[z, x] (EFin \o f) by exact: integrableS intf.
rewrite Rintegral_itv_obnd_cbnd//; last first.
by apply: (@integrableS _ _ _ mu `[z, x]) => //; exact: subset_itv_oc_cc.
apply: (le_trans (le_normr_integral _ _)) => //.
rewrite -(setIidl zxab) Rintegral_mkcondr/=.
under eq_Rintegral do rewrite restrict_normr.
apply/ltW/int_normr_cont => //.
rewrite lebesgue_measure_itv/= lte_fin xz -EFinD lte_fin ltrBlDl.
move: xz; near: x.
exists (d / 2); first by rewrite /= divr_gt0.
move=> x/= /[swap] xz.
rewrite ltr0_norm ?subr_lt0// opprB ltrBlDl => /lt_le_trans; apply.
by rewrite lerD2l ler_pdivrMr// ler_pMr// ler1n.
Unshelve. all: by end_near. Qed.
End parameterized_integral_continuous.
Section corollary_FTC1.
Context {R : realType}.
Notation mu := lebesgue_measure.
Local Open Scope ereal_scope.
Implicit Types (f : R -> R) (a b : R).
(* TODO: move? *)
Let within_continuous_restrict f a b : (a < b)%R ->
{within `[a, b], continuous f} -> {in `]a, b[, continuous (f \_ `[a, b])}.
Proof.
move=> ab + x xab; move=> /(_ x).
rewrite {1}/continuous_at => xf.
rewrite /prop_for /continuous_at patchE.
rewrite mem_set ?mulr1 /=; last exact: subset_itv_oo_cc.
exact: cvg_patch.
Qed.
Corollary continuous_FTC2 f F a b : (a < b)%R ->
{within `[a, b], continuous f} ->
derivable_oo_continuous_bnd F a b ->
{in `]a, b[, F^`() =1 f} ->
(\int[mu]_(x in `[a, b]) (f x)%:E = (F b)%:E - (F a)%:E)%E.
Proof.
move=> ab cf dF F'f.
pose fab := f \_ `[a, b].
pose G x : R := (\int[mu]_(t in `[a, x]) fab t)%R.
have iabf : mu.-integrable `[a, b] (EFin \o f).
by apply: continuous_compact_integrable => //; exact: segment_compact.
have G'f : {in `]a, b[, forall x, G^`() x = fab x /\ derivable G x 1}.
move=> x /[!in_itv]/= /andP[ax xb].
have ifab : mu.-integrable `[a, b] (EFin \o fab).
by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setIid.
have cfab : {for x, continuous fab}.
by apply: within_continuous_restrict => //; rewrite in_itv/= ax xb.
by have [] := continuous_FTC1_closed xb ifab ax cfab.
have F'G'0 : {in `]a, b[, (F^`() - G^`() =1 cst 0)%R}.
move=> x xab; rewrite !fctE (G'f x xab).1 /fab.
by rewrite patchE mem_set/= ?F'f ?subrr//; exact: subset_itv_oo_cc.
have [k FGk] : exists k : R, {in `]a, b[, (F - G =1 cst k)%R}.
have : {in `]a, b[ &, forall x y, (F x - G x = F y - G y)%R}.
move=> x y xab yab.
wlog xLy : x y xab yab / (x <= y)%R.
move=> abFG; have [|/ltW] := leP x y; first exact: abFG.
by move/abFG => /(_ yab xab).
move: xLy; rewrite le_eqVlt => /predU1P[->//|xy].
have [| |] := @MVT _ (F \- G)%R (F^`() - G^`())%R x y xy.
- move=> z zxy; have zab : z \in `]a, b[.
move: z zxy; apply: subset_itvW => //.
+ by move: xab; rewrite in_itv/= => /andP[/ltW].
+ by move: yab; rewrite in_itv/= => /andP[_ /ltW].
have Fz1 : derivable F z 1.
by case: dF => /= + _ _; apply; rewrite inE in zab.
have Gz1 : derivable G z 1 by have [|] := G'f z.
apply: DeriveDef.
+ by apply: derivableB; [exact: Fz1|exact: Gz1].
+ by rewrite deriveB -?derive1E; [by []|exact: Fz1|exact: Gz1].
- apply: derivable_within_continuous => z zxy.
apply: derivableB.
+ case: dF => /= + _ _; apply.
apply: subset_itvSoo zxy => //.
by move: xab; rewrite in_itv/= => /andP[].
by move: yab; rewrite in_itv/= => /andP[].
+ apply: (G'f _ _).2; apply: subset_itvSoo zxy => //.
by move: xab; rewrite in_itv/= => /andP[].
by move: yab; rewrite in_itv/= => /andP[].
- move=> z zxy; rewrite F'G'0.
by rewrite /cst/= mul0r => /eqP; rewrite subr_eq0 => /eqP.
apply: subset_itvSoo zxy => //=; rewrite bnd_simp.
* by move: xab; rewrite in_itv/= => /andP[/ltW].
* by move: yab; rewrite in_itv/= => /andP[_ /ltW].
move=> H; pose c := (a + b) / 2.
exists (F c - G c)%R => u /(H u c); apply.
by rewrite in_itv/= midf_lt//= midf_lt.
have [c GFc] : exists c : R, forall x, x \in `]a, b[ -> (F x - G x)%R = c.
by exists k => x xab; rewrite -[k]/(cst k x) -(FGk x xab).
case: (dF) => _ Fa Fb.
have GacFa : G x @[x --> a^'+] --> (- c + F a)%R.
have Fap : Filter a^'+ by exact: at_right_proper_filter.
have GFac : (G x - F x)%R @[x --> a^'+] --> (- c)%R.
apply/cvgrPdist_le => /= e e0; near=> t.
rewrite opprB GFc; last by rewrite in_itv/=; apply/andP.
by rewrite addrC subrr normr0 ltW.
have := @cvgD _ _ _ _ Fap _ _ _ _ GFac Fa.
rewrite (_ : (G \- F)%R + F = G)//.
by apply/funext => x/=; rewrite subrK.
have GbcFb : G x @[x --> b^'-] --> (- c + F b)%R.
have Fbn : Filter b^'- by exact: at_left_proper_filter.
have GFbc : (G x - F x)%R @[x --> b^'-] --> (- c)%R.
apply/cvgrPdist_le => /= e e0; near=> t.
rewrite opprB GFc; last by rewrite in_itv/=; apply/andP.
by rewrite addrC subrr normr0 ltW.
have := @cvgD _ _ _ _ Fbn _ _ _ _ GFbc Fb.
rewrite (_ : (G \- F)%R + F = G)//.
by apply/funext => x/=; rewrite subrK.
have contF : {within `[a, b], continuous F}.
apply/(continuous_within_itvP _ ab); split => //.
move=> z zab; apply/differentiable_continuous/derivable1_diffP.
by case: dF => /= + _ _; exact.
have iabfab : mu.-integrable `[a, b] (EFin \o fab).
by rewrite -restrict_EFin; apply/integrable_restrict => //; rewrite setIidr.
have Ga : G x @[x --> a^'+] --> G a.
have := parameterized_integral_cvg_left ab iabfab.
rewrite (_ : 0 = G a)%R.
by move=> /left_right_continuousP[].
by rewrite /G interval_set1 Rintegral_set1.
have Gb : G x @[x --> b^'-] --> G b.
exact: (parameterized_integral_cvg_at_left ab iabfab).
have Ga0 : G a = 0%R by rewrite /G interval_set1// Rintegral_set1.
have cE : c = F a.
apply/eqP; rewrite -(opprK c) eq_sym -addr_eq0 addrC.
by have := cvg_unique _ GacFa Ga; rewrite Ga0 => ->.
have GbFbc : G b = (F b - c)%R.
by have := cvg_unique _ GbcFb Gb; rewrite addrC => ->.
rewrite -EFinB -cE -GbFbc /G /Rintegral/= fineK//.
rewrite integralEpatch//=.
by under eq_integral do rewrite restrict_EFin.
exact: integral_fune_fin_num.
Unshelve. all: by end_near. Qed.
End corollary_FTC1.
Section integration_by_parts.
Context {R : realType}.
Notation mu := lebesgue_measure.
Local Open Scope ereal_scope.
Implicit Types (F G f g : R -> R) (a b : R).
Lemma integration_by_parts F G f g a b : (a < b)%R ->
{within `[a, b], continuous f} ->
derivable_oo_continuous_bnd F a b ->
{in `]a, b[, F^`() =1 f} ->
{within `[a, b], continuous g} ->
derivable_oo_continuous_bnd G a b ->
{in `]a, b[, G^`() =1 g} ->
\int[mu]_(x in `[a, b]) (F x * g x)%:E = (F b * G b - F a * G a)%:E -
\int[mu]_(x in `[a, b]) (f x * G x)%:E.
Proof.
move=> ab cf Fab Ff cg Gab Gg.
have cfg : {within `[a, b], continuous (f * G + F * g)%R}.
apply/subspace_continuousP => x abx; apply: cvgD.
- apply: cvgM.
+ by move/subspace_continuousP : cf; exact.
+ have := derivable_oo_continuous_bnd_within Gab.
by move/subspace_continuousP; exact.
- apply: cvgM.
+ have := derivable_oo_continuous_bnd_within Fab.
by move/subspace_continuousP; exact.
+ by move/subspace_continuousP : cg; exact.
have FGab : derivable_oo_continuous_bnd (F * G)%R a b.
move: Fab Gab => /= [abF FFa FFb] [abG GGa GGb];split; [|exact:cvgM..].
by move=> z zab; apply: derivableM; [exact: abF|exact: abG].
have FGfg : {in `]a, b[, (F * G)^`() =1 f * G + F * g}%R.
move: Fab Gab => /= [abF FFa FFb] [abG GGa GGb] z zba.
rewrite derive1E deriveM; [|exact: abF|exact: abG].
by rewrite -derive1E Gg// -derive1E Ff// addrC (mulrC f).
have := continuous_FTC2 ab cfg FGab FGfg; rewrite -EFinB => <-.
under [X in _ = X - _]eq_integral do rewrite EFinD.
have ? : mu.-integrable `[a, b] (fun x => ((f * G) x)%:E).
apply: continuous_compact_integrable => //; first exact: segment_compact.
apply/subspace_continuousP => x abx; apply: cvgM.
+ by move/subspace_continuousP : cf; exact.
+ have := derivable_oo_continuous_bnd_within Gab.
by move/subspace_continuousP; exact.
rewrite /= integralD//=.
- by rewrite addeAC subee ?add0e// integral_fune_fin_num.
- apply: continuous_compact_integrable => //; first exact: segment_compact.
apply/subspace_continuousP => x abx;apply: cvgM.
+ have := derivable_oo_continuous_bnd_within Fab.
by move/subspace_continuousP; exact.
+ by move/subspace_continuousP : cg; exact.
Qed.
End integration_by_parts.
Section Rintegration_by_parts.
Context {R : realType}.
Notation mu := lebesgue_measure.
Implicit Types (F G f g : R -> R) (a b : R).
Lemma Rintegration_by_parts F G f g a b :
(a < b)%R ->
{within `[a, b], continuous f} ->
derivable_oo_continuous_bnd F a b ->
{in `]a, b[, F^`() =1 f} ->
{within `[a, b], continuous g} ->
derivable_oo_continuous_bnd G a b ->
{in `]a, b[, G^`() =1 g} ->
\int[mu]_(x in `[a, b]) (F x * g x) = (F b * G b - F a * G a) -
\int[mu]_(x in `[a, b]) (f x * G x).
Proof.
move=> ab cf Fab Ff cg Gab Gg.
rewrite [in LHS]/Rintegral (@integration_by_parts R F G f g)// fineB//.
suff: mu.-integrable `[a, b] (fun x => (f x * G x)%:E).
move=> /integrableP[? abfG]; apply: fin_real.
rewrite (_ : -oo = - +oo)%E// -lte_absl.
by apply: le_lt_trans abfG; exact: le_abse_integral.
apply: continuous_compact_integrable.
exact: segment_compact.
move=> /= z; apply: continuousM; [exact: cf|].
exact: (derivable_oo_continuous_bnd_within Gab).
Qed.
End Rintegration_by_parts.
(* TODO: move to realfun.v? *)
Section integration_by_substitution_preliminaries.
Context {R : realType}.
Notation mu := lebesgue_measure.
Implicit Types (F G f : R -> R) (a b : R).
Lemma increasing_image_oo F (a b : R) : (a < b)%R ->
{in `[a, b] &, {homo F : x y / (x < y)%R}} ->
F @` `]a, b[ `<=` `]F a, F b[.
Proof.
move=> ab iF ? [x /= xab <-].
move: xab; rewrite !in_itv/= => /andP[ax xb].
by apply/andP; split; apply: iF; rewrite // in_itv/= ?lexx !ltW.
Qed.
Lemma decreasing_image_oo F (a b : R) : (a < b)%R ->
{in `[a, b] &, {homo F : x y /~ (x < y)%R}} ->
F @` `]a, b[ `<=` `]F b, F a[.
Proof.
move=> ab iF ? [x /= xab <-].
move: xab; rewrite !in_itv/= => /andP[ax xb].
by apply/andP; split; apply: iF; rewrite // in_itv/= ?lexx !ltW.
Qed.
Lemma increasing_cvg_at_right_comp F G a b (l : R) : (a < b)%R ->
{in `[a, b[ &, {homo F : x y / (x < y)%R}} ->
F x @[x --> a^'+] --> F a ->
G x @[x --> (F a)^'+] --> l ->
(G \o F) x @[x --> a^'+] --> l.
Proof.
move=> ab incrF cFa GFa.
apply/cvgrPdist_le => /= e e0.
have/cvgrPdist_le /(_ e e0) [d /= d0 {}GFa] := GFa.
have := cvg_at_right_within cFa.
move=> /cvgrPdist_lt/(_ _ d0)[d' /= d'0 {}cFa].
near=> t.
apply: GFa; last by apply: incrF; rewrite //in_itv/= ?lexx//; apply/andP; split.
apply: cFa => //=.
rewrite ltr0_norm// ?subr_lt0// opprB.
by near: t; exact: nbhs_right_ltDr.
Unshelve. all: end_near. Qed.
Lemma increasing_cvg_at_left_comp F G a b (l : R) : (a < b)%R ->
{in `]a, b] &, {homo F : x y / (x < y)%R}} ->
F x @[x --> b^'-] --> F b ->
G x @[x --> (F b)^'-] --> l ->
(G \o F) x @[x --> b^'-] --> l.
Proof.
move=> ab incrF cFb GFb.
apply/cvgrPdist_le => /= e e0.
have/cvgrPdist_le /(_ e e0) [d /= d0 {}GFb] := GFb.
have := cvg_at_left_within cFb.
move/cvgrPdist_lt/(_ _ d0) => [d' /= d'0 {}cFb].
near=> t.
apply: GFb; last by apply: incrF; rewrite //in_itv/= ?lexx//; apply/andP; split.
apply: cFb => //=.
rewrite gtr0_norm// ?subr_gt0//.
by near: t; exact: nbhs_left_ltBl.
Unshelve. all: end_near. Qed.
Lemma decreasing_cvg_at_right_comp F G a b (l : R) : (a < b)%R ->
{in `[a, b[ &, {homo F : x y /~ (x < y)%R}} ->
F x @[x --> a^'+] --> F a ->
G x @[x --> (F a)^'-] --> l ->
(G \o F) x @[x --> a^'+] --> l.
Proof.
move=> ab decrF cFa GFa.
apply/cvgrPdist_le => /= e e0.
have/cvgrPdist_le /(_ e e0) [d' /= d'0 {}GFa] := GFa.
have := cvg_at_right_within cFa.
move/cvgrPdist_lt/(_ _ d'0) => [d'' /= d''0 {}cFa].
near=> t.
apply: GFa; last by apply: decrF; rewrite //in_itv/= ?lexx//; apply/andP; split.
apply: cFa => //=.
rewrite ltr0_norm// ?subr_lt0// opprB.
by near: t; exact: nbhs_right_ltDr.
Unshelve. all: end_near. Qed.
Lemma decreasing_cvg_at_left_comp F G a b (l : R) : (a < b)%R ->
{in `]a, b] &, {homo F : x y /~ (x < y)%R}} ->
F x @[x --> b^'-] --> F b ->
G x @[x --> (F b)^'+] --> l ->
(G \o F) x @[x --> b^'-] --> l.
Proof.
move=> ab decrF cFb GFb.
apply/cvgrPdist_le => /= e e0.
have/cvgrPdist_le /(_ e e0) [d' /= d'0 {}GFb] := GFb.
have := cvg_at_left_within cFb. (* different point from gt0 version *)
move/cvgrPdist_lt/(_ _ d'0) => [d'' /= d''0 {}cFb].
near=> t.
apply: GFb; last by apply: decrF; rewrite //in_itv/= ?lexx//; apply/andP; split.
apply: cFb => //=.
rewrite gtr0_norm// ?subr_gt0//.
by near: t; exact: nbhs_left_ltBl.
Unshelve. all: end_near. Qed.
End integration_by_substitution_preliminaries.
Section integration_by_substitution.
Local Open Scope ereal_scope.
Context {R : realType}.
Notation mu := lebesgue_measure.
Implicit Types (F G f : R -> R) (a b : R).
Lemma integration_by_substitution_decreasing F G a b : (a < b)%R ->
{in `[a, b] &, {homo F : x y /~ (x < y)%R}} ->
{in `]a, b[, continuous F^`()} ->
cvg (F^`() x @[x --> a^'+]) ->
cvg (F^`() x @[x --> b^'-]) ->
derivable_oo_continuous_bnd F a b ->
{within `[F b, F a], continuous G} ->
\int[mu]_(x in `[F b, F a]) (G x)%:E =
\int[mu]_(x in `[a, b]) (((G \o F) * - F^`()) x)%:E.
Proof.
move=> ab decrF cF' /cvg_ex[/= r F'ar] /cvg_ex[/= l F'bl] Fab cG.
have cF := derivable_oo_continuous_bnd_within Fab.
have FbFa : (F b < F a)%R by apply: decrF; rewrite //= in_itv/= (ltW ab) lexx.
have mGFF' : measurable_fun `]a, b[ ((G \o F) * F^`())%R.
apply: measurable_funM.
- apply: (measurable_comp (measurable_itv `]F b, F a[)).
+ exact: decreasing_image_oo.
+ apply: subspace_continuous_measurable_fun => //.
by apply: continuous_subspaceW cG; exact/subset_itv_oo_cc.
+ apply: subspace_continuous_measurable_fun => //.
by apply: continuous_subspaceW cF; exact/subset_itv_oo_cc.
- apply: subspace_continuous_measurable_fun => //.
by apply: continuous_in_subspaceT => x; rewrite inE/= => /cF'.
have {}mGFF' : measurable_fun `[a, b] ((G \o F) * F^`())%R.
exact: measurable_fun_itv_cc mGFF'.
have intG : mu.-integrable `[F b, F a] (EFin \o G).
by apply: continuous_compact_integrable => //; exact: segment_compact.
pose PG x := parameterized_integral mu (F b) x G.
have PGFbFa : derivable_oo_continuous_bnd PG (F b) (F a).
have [/= dF rF lF] := Fab; split => /=.
- move=> x xFbFa /=.
have xFa : (x < F a)%R by move: xFbFa; rewrite in_itv/= => /andP[].
apply: (continuous_FTC1 xFa intG _ _).1 => /=.
by move: xFbFa; rewrite lte_fin in_itv/= => /andP[].
exact: (within_continuous_continuous _ _ xFbFa).
- have := parameterized_integral_continuous FbFa intG.
by move=> /(continuous_within_itvP _ FbFa)[].
- exact: parameterized_integral_cvg_at_left.
rewrite (@continuous_FTC2 _ _ PG _ _ FbFa cG); last 2 first.
- split.
+ move=> x /[dup]xFbFa; rewrite in_itv/= => /andP[Fbx xFa].
apply: (continuous_FTC1 xFa intG Fbx _).1.
by move: cG => /(continuous_within_itvP _ FbFa)[+ _ _]; exact.
+ have := parameterized_integral_continuous FbFa intG.
by move=> /(continuous_within_itvP _ FbFa)[].
+ exact: parameterized_integral_cvg_at_left.
- move=> x xFbFa.
have xFa : (x < F a)%R by move: xFbFa; rewrite in_itv/= => /andP[].
apply: (continuous_FTC1 xFa _ _ _).2 => //=.
by move: xFbFa; rewrite lte_fin in_itv/= => /andP[].
exact: (within_continuous_continuous _ _ xFbFa).
set f := fun x => if x == a then r else if x == b then l else F^`() x.
have fE : {in `]a, b[, F^`() =1 f}.
by move=> x; rewrite in_itv/= => /andP[ax xb]; rewrite /f gt_eqF// lt_eqF.
have DPGFE : {in `]a, b[, (- (PG \o F))%R^`() =1 ((G \o F) * (- f))%R}.
move=> x /[dup]xab /andP[ax xb]; rewrite derive1_comp //; last first.
apply: diff_derivable; apply: differentiable_comp; apply/derivable1_diffP.
by case: Fab => + _ _; exact.
by case: PGFbFa => + _ _; apply; exact: decreasing_image_oo.
have /(@derive_val _ _ _ _ _ -%R) := @is_deriveNid _ _ (PG (F x)) 1%R.
rewrite fctE -derive1E => ->; rewrite mulN1r mulrN; congr -%R.
rewrite derive1_comp; last 2 first.
- by case: Fab => + _ _; exact.
- by case: PGFbFa => [+ _ _]; apply; exact: decreasing_image_oo.
rewrite fE//; congr *%R.
have /[dup]FxFbFa : F x \in `]F b, F a[ by exact: decreasing_image_oo.
rewrite in_itv/= => /andP[FbFx FxFa].
apply: (continuous_FTC1 FxFa intG FbFx _).2 => //=.
exact: (within_continuous_continuous _ _ FxFbFa).
rewrite -[LHS]oppeK oppeB// addrC.
under eq_integral do rewrite mulrN EFinN.
rewrite oppeD//= -(continuous_FTC2 ab _ _ DPGFE); last 2 first.
- apply/(continuous_within_itvP _ ab); split.
+ move=> x xab; apply: continuousM; first apply: continuous_comp.
* by move: cF => /(continuous_within_itvP _ ab)[+ _ _]; exact.
* move/(continuous_within_itvP _ FbFa) : cG => [+ _ _]; apply.
exact: decreasing_image_oo.
* have : -%R F^`() @ x --> (- f x)%R.
by rewrite -fE//; apply: cvgN; exact: cF'.
apply: cvg_trans; apply: near_eq_cvg; rewrite near_simpl.
apply: (@open_in_nearW _ _ `]a, b[) ; last by rewrite inE.
exact: interval_open.
by move=> z; rewrite inE/= => zab; rewrite fctE fE.
+ apply: cvgM.
apply: (decreasing_cvg_at_right_comp ab) => //.
* by move=> x y xab yab; apply: decrF; exact: subset_itv_co_cc.
* by move/continuous_within_itvP : cF => /(_ ab)[].
* by move/continuous_within_itvP : cG => /(_ FbFa)[].
rewrite fctE {2}/f eqxx; apply: cvgN.
apply: cvg_trans F'ar; apply: near_eq_cvg.
by near=> z; rewrite fE// in_itv/=; apply/andP; split.
+ apply: cvgM.
apply: (decreasing_cvg_at_left_comp ab).
* by move=> //x y xab yab; apply: decrF; apply: subset_itv_oc_cc.
* by move/continuous_within_itvP : cF => /(_ ab)[].
* by move/continuous_within_itvP : cG => /(_ FbFa)[].
rewrite fctE {2}/f gt_eqF// eqxx.
apply: cvgN; apply: cvg_trans F'bl; apply: near_eq_cvg.
by near=> z; rewrite fE// in_itv/=; apply/andP; split.
- have [/= dF rF lF] := Fab.
have := derivable_oo_continuous_bnd_within PGFbFa.
move=> /(continuous_within_itvP _ FbFa)[_ PGFb PGFa]; split => /=.
- move=> x xab; apply/derivable1_diffP; apply: differentiable_comp => //.
apply: differentiable_comp; apply/derivable1_diffP.
by case: Fab => + _ _; exact.
by case: PGFbFa => + _ _; apply; exact: decreasing_image_oo.
- apply: cvgN; apply/cvgrPdist_le => /= e e0.
have /cvgrPdist_le/(_ e e0)[d /= d0 {}PGFa] := PGFa.
have := cvg_at_right_within rF.
move/cvgrPdist_lt => /(_ _ d0)[d' /= d'0 {}cFa].
near=> t.
apply: PGFa; last by apply: decrF; rewrite //in_itv/= ?lexx !ltW.
apply: cFa => //=.
rewrite ltr0_norm// ?subr_lt0// opprB.
by near: t; exact: nbhs_right_ltDr.
- apply: cvgN; apply/cvgrPdist_le => /= e e0.
have /cvgrPdist_le/(_ e e0)[d /= d0 {}PGFb] := PGFb.
have := cvg_at_left_within lF.
move/cvgrPdist_lt => /(_ _ d0)[d' /= d'0 {}cFb].
near=> t.
apply: PGFb; last by apply: decrF; rewrite //in_itv/= ?lexx !ltW.
apply: cFb => //=.
rewrite gtr0_norm// ?subr_gt0//.
by near: t; exact: nbhs_left_ltBl.
apply: eq_integral_itv_bounded.
- rewrite mulrN; apply: measurableT_comp => //.
apply: (eq_measurable_fun ((G \o F) * F^`())%R) => //.
by move=> x; rewrite inE/= => xab; rewrite !fctE fE.
by move: mGFF'; apply: measurable_funS => //; exact: subset_itv_oo_cc.
- apply: measurableT_comp => //; apply: measurable_funS mGFF' => //.
exact: subset_itv_oo_cc.
- by move=> x /[!inE] xab; rewrite mulrN !fctE fE.
Unshelve. all: end_near. Qed.
Lemma integration_by_substitution_oppr G a b : (a < b)%R ->
{within `[(- b)%R, (- a)%R], continuous G} ->
\int[mu]_(x in `[(- b)%R, (- a)%R]) (G x)%:E =
\int[mu]_(x in `[a, b]) ((G \o -%R) x)%:E.
Proof.
move=> ab cG; have Dopp: (@GRing.opp R)^`() = cst (-1)%R.
by apply/funext => z; rewrite derive1E derive_val.
rewrite (@integration_by_substitution_decreasing -%R)//.
- apply: eq_integral => //= x /[!inE] xab; congr (EFin _).
by rewrite !fctE -[RHS]mulr1 derive1E deriveN// opprK derive_val.
- by move=> ? ? _ _; rewrite ltrN2.
- by rewrite Dopp => ? _; exact: cvg_cst.
- by rewrite Dopp; apply: is_cvgN; exact: is_cvg_cst.
- by rewrite Dopp; apply: is_cvgN; exact: is_cvg_cst.
- split => //.
+ by rewrite -at_leftN; exact: cvg_at_left_filter.
+ by rewrite -at_rightN; exact: cvg_at_right_filter.
Qed.
Lemma integration_by_substitution_increasing F G a b : (a < b)%R ->
{in `[a, b] &, {homo F : x y / (x < y)%R}} ->
{in `]a, b[, continuous F^`()} ->
cvg (F^`() x @[x --> a^'+]) ->
cvg (F^`() x @[x --> b^'-]) ->
derivable_oo_continuous_bnd F a b ->
{within `[F a, F b], continuous G} ->
\int[mu]_(x in `[F a, F b]) (G x)%:E =
\int[mu]_(x in `[a, b]) (((G \o F) * F^`()) x)%:E.
Proof.
move=> ab incrF cF' /cvg_ex[/= r F'ar] /cvg_ex[/= l F'bl] Fab cG.
transitivity (\int[mu]_(x in `[F a, F b]) (((G \o -%R) \o -%R) x)%:E).
by apply/eq_integral => x ? /=; rewrite opprK.
have FaFb : (F a < F b)%R by rewrite incrF// in_itv/= lexx (ltW ab).
have cGN : {within `[- F b, - F a]%classic%R, continuous (G \o -%R)}.
apply/continuous_within_itvP; [by rewrite ltrN2|split].
- move=> x /[dup]xab /[!in_itv]/= /andP[ax xb].
apply: continuous_comp; first exact: continuousN.
- move/(continuous_within_itvP _ FaFb) : cG => [+ _ _]; apply.
by rewrite in_itv/= ltrNr xb ltrNl.
- move/(continuous_within_itvP _ FaFb) : cG => [_ _].
by rewrite /= opprK => /cvg_at_leftNP.
- move/(continuous_within_itvP _ FaFb) : cG => [_ + _].
by rewrite /= opprK => /cvg_at_rightNP.
rewrite -integration_by_substitution_oppr//.
rewrite (@integration_by_substitution_decreasing (- F)%R); first last.
- exact: cGN.
- split; [|by apply: cvgN; case: Fab..].
by move=> x xab; apply: derivableN; case: Fab => + _ _; exact.
- apply/cvg_ex; exists (- l)%R.
move/cvgN : F'bl; apply: cvg_trans; apply: near_eq_cvg.
near=> z; rewrite fctE !derive1E deriveN//.
by case: Fab => + _ _; apply; rewrite in_itv/=; apply/andP; split.
- apply/cvg_ex; exists (- r)%R.
move/cvgN : F'ar; apply: cvg_trans; apply: near_eq_cvg.
near=> z; rewrite fctE !derive1E deriveN//.
by case: Fab => + _ _; apply; rewrite in_itv/=; apply/andP; split.
- move=> x xab; rewrite /continuous_at derive1E deriveN; last first.
by case: Fab => + _ _; exact.
rewrite -derive1E.
have /cvgN := cF' _ xab; apply: cvg_trans; apply: near_eq_cvg.
rewrite near_simpl; near=> y; rewrite fctE !derive1E deriveN//.
by case: Fab => + _ _; apply; near: y; exact: near_in_itv.
- by move=> x y xab yab yx; rewrite ltrN2 incrF.
- by [].
have mGF : measurable_fun `]a, b[ (G \o F).
apply: (@measurable_comp _ _ _ _ _ _ `]F a, F b[%classic) => //.
- move=> /= _ [x] /[!in_itv]/= /andP[ax xb] <-.
by rewrite incrF ?incrF// in_itv/= ?lexx/= ?(ltW ab)//= ?(ltW ax) ?(ltW xb).
- apply: subspace_continuous_measurable_fun => //.
by apply: continuous_subspaceW cG; exact/subset_itv_oo_cc.
- apply: subspace_continuous_measurable_fun => //.
by apply: derivable_within_continuous => x xab; case: Fab => + _ _; exact.
have mF' : measurable_fun `]a, b[ F^`().
apply: subspace_continuous_measurable_fun => //.
by apply: continuous_in_subspaceT => x /[!inE] xab; exact: cF'.
rewrite integral_itv_bndoo//; last first.
rewrite compA -(compA G -%R) (_ : -%R \o -%R = id); last first.
by apply/funext => y; rewrite /= opprK.
apply: measurable_funM => //; apply: measurableT_comp => //.
apply: (@eq_measurable_fun _ _ _ _ _ (- F^`())%R).