-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathsequences.v
3167 lines (2757 loc) · 133 KB
/
sequences.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect ssralg ssrint ssrnum matrix.
From mathcomp Require Import interval rat archimedean.
From mathcomp Require Import boolp classical_sets functions.
From mathcomp Require Import set_interval.
Require Import reals ereal signed topology normedtype landau.
(**md**************************************************************************)
(* # Definitions and lemmas about sequences *)
(* *)
(* The purpose of this file is to gather generic definitions and lemmas about *)
(* sequences. Incidentally, it defines the exponential function. *)
(* ``` *)
(* nondecreasing_seq u == the sequence u is non-decreasing *)
(* nonincreasing_seq u == the sequence u is non-increasing *)
(* increasing_seq u == the sequence u is (strictly) increasing *)
(* decreasing_seq u == the sequence u is (strictly) decreasing *)
(* ``` *)
(* *)
(* ## About sequences of real numbers *)
(* ``` *)
(* [sequence u_n]_n == the sequence of general element u_n *)
(* R ^nat == notation for the type of sequences, i.e., *)
(* functions of type nat -> R *)
(* seqDU F == sequence F_0, F_1 \ F_0, F_2 \ (F_0 U F_1),... *)
(* seqD F == the sequence F_0, F_1 \ F_0, F_2 \ F_1,... *)
(* series u_ == the sequence of partial sums of u_ *)
(* telescope u_ := [sequence u_ n.+1 - u_ n]_n *)
(* harmonic == harmonic sequence *)
(* arithmetic == arithmetic sequence *)
(* geometric == geometric sequence *)
(* also arithmetic_mean, harmonic_mean, *)
(* root_mean_square *)
(* [series u_n]_n == the series of general element u_n *)
(* [normed S] == transforms a series S = [series u_n]_n in its *)
(* normed series [series `|u_n|]_n] (useful to *)
(* represent absolute and normed convergence: *)
(* cvg [norm S_n]) *)
(* exp_coeff n == the sequence of coefficients of the real *)
(* exponential *)
(* expR x == the exponential function defined on a realType *)
(* is_cvg_series_exp_coeff == convergence of \sum_n^+oo x^n / n! *)
(* \sum_<range> F i == lim (fun n => (\sum_<range>) F i)) where *)
(* <range> can be (i <oo), (i <oo | P i), *)
(* (m <= i <oo), or (m <= i <oo | P i) *)
(* ``` *)
(* *)
(* Sections sequences_R_* contain properties of sequences of real numbers. *)
(* For example: *)
(* ``` *)
(* nonincreasing_cvgn_ge u_ == if u_ is nonincreasing and convergent then *)
(* forall n, lim u_ <= u_ n *)
(* nondecreasing_cvgn_le u_ == if u_ is nondecreasing and convergent then *)
(* forall n, lim u_ >= u_ n *)
(* nondecreasing_cvgn u_ == if u_ is nondecreasing and bounded then u_ *)
(* is convergent and its limit is sup u_n *)
(* nonincreasing_cvgn u_ == if u_ is nonincreasing u_ and bound by below *)
(* then u_ is convergent *)
(* adjacent == adjacent sequences lemma *)
(* cesaro == Cesaro's lemma *)
(* ``` *)
(* *)
(* ## About sequences of natural numbers *)
(* ``` *)
(* nseries u := fun n => \sum_(0 <= k < n) u k *)
(* where u has type nat^nat *)
(* ``` *)
(* *)
(* ## About sequences of extended real numbers *)
(* ``` *)
(* eseries u := [sequence \sum_(0 <= k < n) u k]_n *)
(* where u has type (\bar R)^nat *)
(* etelescope u := [sequence u n.+1 - u n]_n *)
(* ``` *)
(* *)
(* Section sequences_ereal contain properties of sequences of extended real *)
(* numbers. *)
(* *)
(* Naming convention: lemmas about series of non-negative (resp. *)
(* non-positive) extended numbers use the string "nneseries" (resp. *)
(* "npeseries") as part of their identifier *)
(* *)
(* ## Limit superior and inferior for sequences *)
(* ``` *)
(* sdrop u n := {u_k | k >= n} *)
(* sups u := [sequence sup (sdrop u n)]_n *)
(* infs u := [sequence inf (sdrop u n)]_n *)
(* limn_sup, limn_inf == limit sup/inferior for a sequence of reals *)
(* esups u := [sequence ereal_sup (sdrop u n)]_n *)
(* einfs u := [sequence ereal_inf (sdrop u n)]_n *)
(* limn_esup u, limn_einf == limit sup/inferior for a sequence of *)
(* of extended reals *)
(* ``` *)
(* *)
(* ## Bounded functions *)
(* This section proves Baire's Theorem, stating that complete normed spaces *)
(* are Baire spaces, and Banach-Steinhaus' theorem, stating that between a *)
(* complete normed vector space and a normed vector spaces, pointwise bounded *)
(* and uniformly bounded subset of functions correspond. *)
(* ``` *)
(* bounded_fun_norm f == a function between normed spaces transforms a *)
(* bounded set into a bounded set *)
(* pointwise_bounded F == F is a set of pointwise bounded functions *)
(* between normed spaces *)
(* uniform_bounded F == F is a set of uniform bounded functions *)
(* between normed spaces *)
(* ``` *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldNormedType.Exports.
From mathcomp Require Import mathcomp_extra.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Reserved Notation "R ^nat" (at level 0).
Reserved Notation "a `^ x" (at level 11).
Reserved Notation "[ 'sequence' E ]_ n"
(at level 0, E at level 200, n name, format "[ 'sequence' E ]_ n").
Reserved Notation "[ 'series' E ]_ n"
(at level 0, E at level 0, n name, format "[ 'series' E ]_ n").
Reserved Notation "[ 'normed' E ]" (at level 0, format "[ 'normed' E ]").
Reserved Notation "\big [ op / idx ]_ ( m <= i <oo | P ) F"
(at level 36, F at level 36, op, idx at level 10, m, i at level 50,
format "'[' \big [ op / idx ]_ ( m <= i <oo | P ) F ']'").
Reserved Notation "\big [ op / idx ]_ ( m <= i <oo ) F"
(at level 36, F at level 36, op, idx at level 10, i, m at level 50,
format "'[' \big [ op / idx ]_ ( m <= i <oo ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i <oo | P ) F"
(at level 36, F at level 36, op, idx at level 10, i at level 50,
format "'[' \big [ op / idx ]_ ( i <oo | P ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i <oo ) F"
(at level 36, F at level 36, op, idx at level 10, i at level 50,
format "'[' \big [ op / idx ]_ ( i <oo ) F ']'").
Reserved Notation "\sum_ ( m <= i '<oo' | P ) F"
(at level 41, F at level 41, i, m at level 50,
format "'[' \sum_ ( m <= i <oo | P ) '/ ' F ']'").
Reserved Notation "\sum_ ( m <= i '<oo' ) F"
(at level 41, F at level 41, i, m at level 50,
format "'[' \sum_ ( m <= i <oo ) '/ ' F ']'").
Reserved Notation "\sum_ ( i '<oo' | P ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \sum_ ( i <oo | P ) '/ ' F ']'").
Reserved Notation "\sum_ ( i '<oo' ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \sum_ ( i <oo ) '/ ' F ']'").
Definition sequence R := nat -> R.
Definition mk_sequence R f : sequence R := f.
Arguments mk_sequence R f /.
Notation "[ 'sequence' E ]_ n" := (mk_sequence (fun n => E%E)) : ereal_scope.
Notation "[ 'sequence' E ]_ n" := (mk_sequence (fun n => E)) : ring_scope.
Notation "R ^nat" := (sequence R) : type_scope.
Notation "'nondecreasing_seq' f" := ({homo f : n m / (n <= m)%nat >-> (n <= m)%O})
(at level 10).
Notation "'nonincreasing_seq' f" := ({homo f : n m / (n <= m)%nat >-> (n >= m)%O})
(at level 10).
Notation "'increasing_seq' f" := ({mono f : n m / (n <= m)%nat >-> (n <= m)%O})
(at level 10).
Notation "'decreasing_seq' f" := ({mono f : n m / (n <= m)%nat >-> (n >= m)%O})
(at level 10).
(* TODO: the "strict" versions with mono instead of homo should also have notations*)
Lemma nondecreasing_opp (T : numDomainType) (u_ : T ^nat) :
nondecreasing_seq (- u_) = nonincreasing_seq u_.
Proof. by rewrite propeqE; split => du x y /du; rewrite lerN2. Qed.
Lemma nonincreasing_opp (T : numDomainType) (u_ : T ^nat) :
nonincreasing_seq (- u_) = nondecreasing_seq u_.
Proof. by rewrite propeqE; split => du x y /du; rewrite lerN2. Qed.
Lemma decreasing_opp (T : numDomainType) (u_ : T ^nat) :
decreasing_seq (- u_) = increasing_seq u_.
Proof. by rewrite propeqE; split => du x y; rewrite -du lerN2. Qed.
Lemma increasing_opp (T : numDomainType) (u_ : T ^nat) :
increasing_seq (- u_) = decreasing_seq u_.
Proof. by rewrite propeqE; split => du x y; rewrite -du lerN2. Qed.
Lemma nondecreasing_seqP d (T : porderType d) (u_ : T ^nat) :
(forall n, u_ n <= u_ n.+1)%O <-> nondecreasing_seq u_.
Proof. by split=> [|h n]; [exact: homo_leq le_trans | exact: h]. Qed.
Lemma nonincreasing_seqP d (T : porderType d) (u_ : T ^nat) :
(forall n, u_ n >= u_ n.+1)%O <-> nonincreasing_seq u_.
Proof.
split; first by apply: homo_leq (fun _ _ _ u v => le_trans v u).
by move=> u_nincr n; exact: u_nincr.
Qed.
Lemma increasing_seqP d (T : porderType d) (u_ : T ^nat) :
(forall n, u_ n < u_ n.+1)%O <-> increasing_seq u_.
Proof.
split; first by move=> u_nondec; apply: le_mono; apply: homo_ltn lt_trans _.
by move=> u_incr n; rewrite lt_neqAle eq_le !u_incr leqnSn ltnn.
Qed.
Lemma decreasing_seqP d (T : porderType d) (u_ : T ^nat) :
(forall n, u_ n > u_ n.+1)%O <-> decreasing_seq u_.
Proof.
split.
move=> u_noninc.
(* FIXME: add shortcut to order.v *)
apply: (@total_homo_mono _ T u_ leq ltn _ _ leqnn _ ltn_neqAle
_ (fun _ _ _ => esym (le_anti _)) leq_total
(homo_ltn (fun _ _ _ u v => lt_trans v u) u_noninc)) => //.
by move=> x y; rewrite eq_sym -lt_neqAle.
by move=> u_decr n; rewrite lt_neqAle eq_le !u_decr !leqnSn ltnn.
Qed.
(* TODO (maybe): variants for near \oo ?? *)
Lemma lef_at (aT : Type) d (T : porderType d) (f : (aT -> T)^nat) x :
nondecreasing_seq f -> {homo (f^~ x) : n m / (n <= m)%N >-> (n <= m)%O}.
Proof. by move=> nf m n mn; have /asboolP := nf _ _ mn; exact. Qed.
Lemma nondecreasing_seqD T (R : numDomainType) (f g : (T -> R)^nat) :
(forall x, nondecreasing_seq (f ^~ x)) ->
(forall x, nondecreasing_seq (g ^~ x)) ->
(forall x, nondecreasing_seq ((f \+ g) ^~ x)).
Proof. by move=> ndf ndg t m n mn; apply: lerD; [exact/ndf|exact/ndg]. Qed.
Local Notation eqolimn := (@eqolim _ _ _ eventually_filter).
Local Notation eqolimPn := (@eqolimP _ _ _ eventually_filter).
(** Sequences of sets *)
Section seqDU.
Variables (T : Type).
Implicit Types F : (set T)^nat.
Definition seqDU F n := F n `\` \big[setU/set0]_(k < n) F k.
Lemma trivIset_seqDU F : trivIset setT (seqDU F).
Proof.
move=> i j _ _; wlog ij : i j / (i < j)%N => [/(_ _ _ _) tB|].
by have [ij /tB->|ij|] := ltngtP i j; rewrite //setIC => /tB ->.
move=> /set0P; apply: contraNeq => _; apply/eqP.
rewrite /seqDU 2!setDE !setIA setIC (bigD1 (Ordinal ij)) //=.
by rewrite setCU setIAC !setIA setICl !set0I.
Qed.
Lemma bigsetU_seqDU F n :
\big[setU/set0]_(k < n) F k = \big[setU/set0]_(k < n) seqDU F k.
Proof.
elim: n => [|n ih]; first by rewrite 2!big_ord0.
rewrite !big_ord_recr /= predeqE => t; split=> [[Ft|Fnt]|[Ft|[Fnt Ft]]].
- by left; rewrite -ih.
- have [?|?] := pselect ((\big[setU/set0]_(i < n) seqDU F i) t); first by left.
by right; split => //; rewrite ih.
- by left; rewrite ih.
- by right.
Qed.
Lemma seqDU_bigcup_eq F : \bigcup_k F k = \bigcup_k seqDU F k.
Proof.
rewrite /seqDU predeqE => t; split=> [[n _ Fnt]|[n _]]; last first.
by rewrite setDE => -[? _]; exists n.
have [UFnt|UFnt] := pselect ((\big[setU/set0]_(k < n) F k) t); last by exists n.
suff [m [Fmt FNmt]] : exists m, F m t /\ forall k, (k < m)%N -> ~ F k t.
by exists m => //; split => //; rewrite -bigcup_mkord => -[k kj]; exact: FNmt.
move: UFnt; rewrite -bigcup_mkord => -[/= k _ Fkt] {Fnt n}.
have [n kn] := ubnP k; elim: n => // n ih in t k Fkt kn *.
case: k => [|k] in Fkt kn *; first by exists O.
have [?|] := pselect (forall m, (m <= k)%N -> ~ F m t); first by exists k.+1.
move=> /existsNP[i] /not_implyP[ik] /contrapT Fit; apply: (ih t i) => //.
by rewrite (leq_ltn_trans ik).
Qed.
Lemma seqDUIE (S : set T) (F : (set T)^nat) :
seqDU (fun n => S `&` F n) = (fun n => S `&` F n `\` \bigcup_(i < n) F i).
Proof.
apply/funext => n; rewrite -setIDA; apply/seteqP; split; last first.
move=> x [Sx [Fnx UFx]]; split=> //; apply: contra_not UFx => /=.
by rewrite bigcup_mkord -big_distrr/= => -[].
by rewrite /seqDU -setIDA bigcup_mkord -big_distrr/= setDIr setIUr setDIK set0U.
Qed.
End seqDU.
Arguments trivIset_seqDU {T} F.
#[global] Hint Resolve trivIset_seqDU : core.
Section seqD.
Variable T : Type.
Implicit Types F : (set T) ^nat.
Definition seqD F := fun n => if n isn't n'.+1 then F O else F n `\` F n'.
Lemma seqDU_seqD F : nondecreasing_seq F -> seqDU F = seqD F.
Proof.
move=> ndF; rewrite funeqE => -[|n] /=; first by rewrite /seqDU big_ord0 setD0.
rewrite /seqDU big_ord_recr /= setUC; congr (_ `\` _); apply/setUidPl.
by rewrite -bigcup_mkord => + [k /= kn]; exact/subsetPset/ndF/ltnW.
Qed.
Lemma trivIset_seqD F : nondecreasing_seq F -> trivIset setT (seqD F).
Proof. by move=> ndF; rewrite -seqDU_seqD //; exact: trivIset_seqDU. Qed.
Lemma bigsetU_seqD F n :
\big[setU/set0]_(i < n) F i = \big[setU/set0]_(i < n) seqD F i.
Proof.
case: n => [|n]; first by rewrite 2!big_ord0.
elim: n => [|n ih]; first by rewrite !big_ord_recl !big_ord0.
rewrite big_ord_recr [in RHS]big_ord_recr /= -{}ih predeqE => x; split.
move=> [?|?]; first by left.
have [?|?] := pselect (F n x); last by right.
by left; rewrite big_ord_recr /=; right.
by move=> [?|[? ?]]; [left | right].
Qed.
Lemma setU_seqD F : nondecreasing_seq F ->
forall n, F n.+1 = F n `|` seqD F n.+1.
Proof.
move=> ndF n; rewrite /seqD funeqE => x; rewrite propeqE; split.
by move=> ?; have [?|?] := pselect (F n x); [left | right].
by move=> -[|[]//]; move: x; exact/subsetPset/ndF.
Qed.
Lemma nondecreasing_bigsetU_seqD F n : nondecreasing_seq F ->
\big[setU/set0]_(i < n.+1) seqD F i = F n.
Proof.
move=> ndF; elim: n => [|n ih]; rewrite funeqE => x; rewrite propeqE; split.
- by rewrite big_ord_recl big_ord0 setU0.
- by move=> ?; rewrite big_ord_recl big_ord0; left.
- by rewrite big_ord_recr /= ih => -[|[]//]; move: x; exact/subsetPset/ndF.
- rewrite (setU_seqD ndF) => -[|/= [Fn1x Fnx]].
by rewrite big_ord_recr /= -ih => Fnx; left.
by rewrite big_ord_recr /=; right.
Qed.
Lemma eq_bigcup_seqD F : \bigcup_n seqD F n = \bigcup_n F n.
Proof.
apply/seteqP; split => [x []|x []].
by elim=> [_ /= F0x|n ih _ /= [Fn1x Fnx]]; [exists O | exists n.+1].
elim=> [_ F0x|n ih _ Fn1x]; first by exists O.
have [|Fnx] := pselect (F n x); last by exists n.+1.
by move=> /(ih I)[m _ Fmx]; exists m.
Qed.
Lemma eq_bigcup_seqD_bigsetU F :
\bigcup_n (seqD (fun n => \big[setU/set0]_(i < n.+1) F i) n) = \bigcup_n F n.
Proof.
rewrite (eq_bigcup_seqD (fun n => \big[setU/set0]_(i < n.+1) F i)).
rewrite eqEsubset; split => [t [i _]|t [i _ Fit]].
by rewrite -bigcup_seq_cond => -[/= j _ Fjt]; exists j.
by exists i => //; rewrite big_ord_recr /=; right.
Qed.
Lemma bigcup_bigsetU_bigcup F :
\bigcup_k \big[setU/set0]_(i < k.+1) F i = \bigcup_k F k.
Proof.
apply/seteqP; split=> [x [i _]|x [i _ Fix]].
by rewrite -bigcup_mkord => -[j _ Fjx]; exists j.
by exists i => //; rewrite big_ord_recr/=; right.
Qed.
End seqD.
#[deprecated(since="mathcomp-analysis 1.2.0", note="renamed to `nondecreasing_bigsetU_seqD`")]
Notation eq_bigsetU_seqD := nondecreasing_bigsetU_seqD (only parsing).
(** Convergence of patched sequences *)
Section sequences_patched.
(* TODO: generalizations to numDomainType *)
Section NatShift.
Variables (N : nat) (V : ptopologicalType).
Implicit Types (f : nat -> V) (u : V ^nat) (l : V).
Lemma cvg_restrict f u_ l :
([sequence if (n <= N)%N then f n else u_ n]_n @ \oo --> l) =
(u_ @ \oo --> l).
Proof.
rewrite propeqE; split; apply: cvg_trans; apply: near_eq_cvg;
by near do [move=> /=; case: ifP => //; rewrite ltn_geF//].
Unshelve. all: by end_near. Qed.
Lemma is_cvg_restrict f u_ :
cvgn [sequence if (n <= N)%nat then f n else u_ n]_n = cvgn u_.
Proof.
by rewrite propeqE; split;
[rewrite cvg_restrict|rewrite -(cvg_restrict f)] => /cvgP.
Qed.
Lemma cvg_centern u_ l :
([sequence u_ (n - N)%N]_n @ \oo --> l) = (u_ @ \oo --> l).
Proof.
rewrite propeqE; split; last by apply: cvg_comp; apply: cvg_subnr.
gen have cD : u_ l / u_ @ \oo --> l -> (fun n => u_ (n + N)%N) @ \oo --> l.
by apply: cvg_comp; apply: cvg_addnr.
by move=> /cD /=; under [X in X @ _ --> l]funext => n do rewrite addnK.
Qed.
Lemma cvg_shiftn u_ l :
([sequence u_ (n + N)%N]_n @ \oo --> l) = (u_ @ \oo --> l).
Proof.
rewrite propeqE; split; last by apply: cvg_comp; apply: cvg_addnr.
rewrite -[X in X -> _]cvg_centern; apply: cvg_trans => /=.
by apply: near_eq_cvg; near do rewrite subnK; exists N.
Unshelve. all: by end_near. Qed.
End NatShift.
Variables (V : ptopologicalType).
Lemma cvg_shiftS u_ (l : V) :
([sequence u_ n.+1]_n @ \oo --> l) = (u_ @ \oo --> l).
Proof.
suff -> : [sequence u_ n.+1]_n = [sequence u_(n + 1)%N]_n by rewrite cvg_shiftn.
by rewrite funeqE => n/=; rewrite addn1.
Qed.
End sequences_patched.
Section sequences_R_lemmas_realFieldType.
Variable R : realFieldType.
Implicit Types u v : R ^nat.
Lemma __deprecated__squeeze T (f g h : T -> R) (a : filter_on T) :
(\forall x \near a, f x <= g x <= h x) -> forall (l : R),
f @ a --> l -> h @ a --> l -> g @ a --> l.
Proof. exact: squeeze_cvgr. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `squeeze_cvgr`")]
Notation squeeze := __deprecated__squeeze (only parsing).
Lemma __deprecated__cvgPpinfty (u_ : R ^nat) :
u_ @ \oo --> +oo <-> forall A, \forall n \near \oo, A <= u_ n.
Proof. exact: cvgryPge. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `cvgryPge`, and generalized to any filter")]
Notation cvgPpinfty := __deprecated__cvgPpinfty (only parsing).
Lemma __deprecated__cvgNpinfty u_ : (- u_ @ \oo --> +oo) = (u_ @ \oo --> -oo).
Proof. exact/propeqP/cvgNry. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="use `cvgNry` instead")]
Notation cvgNpinfty := __deprecated__cvgNpinfty (only parsing).
Lemma __deprecated__cvgNninfty u_ : (- u_ @ \oo --> -oo) = (u_ @ \oo --> +oo).
Proof. exact/propeqP/cvgNrNy. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="use `cvgNrNy` instead")]
Notation cvgNninfty := __deprecated__cvgNninfty (only parsing).
Lemma __deprecated__cvgPninfty (u_ : R ^nat) :
u_ @ \oo --> -oo <-> forall A, \forall n \near \oo, A >= u_ n.
Proof. exact: cvgrNyPle. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `cvgrNyPle`, and generalized to any filter")]
Notation cvgPninfty := __deprecated__cvgPninfty (only parsing).
Lemma __deprecated__ger_cvg_pinfty u_ v_ : (\forall n \near \oo, u_ n <= v_ n) ->
u_ @ \oo --> +oo -> v_ @ \oo --> +oo.
Proof. exact: ger_cvgy. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `ger_cvgy`, and generalized to any filter")]
Notation ger_cvg_pinfty := __deprecated__ger_cvg_pinfty (only parsing).
Lemma __deprecated__ler_cvg_ninfty v_ u_ : (\forall n \near \oo, u_ n <= v_ n) ->
v_ @ \oo --> -oo -> u_ @ \oo --> -oo.
Proof. exact: ler_cvgNy. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `ler_cvgNy`, and generalized to any filter")]
Notation ler_cvg_ninfty := __deprecated__ler_cvg_ninfty (only parsing).
Lemma __deprecated__lim_ge x u : cvg (u @ \oo) ->
(\forall n \near \oo, x <= u n) -> x <= lim (u @ \oo).
Proof. exact: limr_ge. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `limr_ge`, and generalized to any proper filter")]
Notation lim_ge := __deprecated__lim_ge (only parsing).
Lemma __deprecated__lim_le x u : cvg (u @ \oo) ->
(\forall n \near \oo, x >= u n) -> x >= lim (u @ \oo).
Proof. exact: limr_le. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `limr_le`, and generalized to any proper filter")]
Notation lim_le := __deprecated__lim_le (only parsing).
Lemma lt_lim u (M : R) : nondecreasing_seq u ->
cvgn u -> M < limn u -> \forall n \near \oo, M <= u n.
Proof.
move=> ndu cu Ml; have [[n Mun]|/forallNP Mu] := pselect (exists n, M <= u n).
near=> m; suff : u n <= u m by exact: le_trans.
by near: m; exists n.+1 => // p q; apply/ndu/ltnW.
have {}Mu : forall x, M > u x by move=> x; rewrite ltNge; apply/negP.
have : limn u <= M by apply: limr_le => //; near=> m; apply/ltW/Mu.
by move/(lt_le_trans Ml); rewrite ltxx.
Unshelve. all: by end_near. Qed.
Lemma nonincreasing_cvgn_ge u_ : nonincreasing_seq u_ -> cvgn u_ ->
forall n, limn u_ <= u_ n.
Proof.
move=> du ul p; rewrite leNgt; apply/negP => up0.
move/cvgrPdist_lt : ul => /(_ `|u_ p - limn u_|%R).
rewrite {1}ltr0_norm ?subr_lt0 // opprB subr_gt0 => /(_ up0) ul.
near \oo => N.
have /du uNp : (p <= N)%nat by near: N; rewrite nearE; exists p.
have : `|limn u_ - u_ N| >= `|u_ p - limn u_|%R.
rewrite ltr0_norm // ?subr_lt0 // opprB distrC.
rewrite (@le_trans _ _ (limn u_ - u_ N)) // ?lerB //.
rewrite (_ : `| _ | = `|u_ N - limn u_|%R) // ler0_norm // ?opprB //.
by rewrite subr_le0 (le_trans _ (ltW up0)).
rewrite leNgt => /negP; apply; by near: N.
Unshelve. all: by end_near. Qed.
Lemma nondecreasing_cvgn_le u_ : nondecreasing_seq u_ -> cvgn u_ ->
forall n, u_ n <= limn u_.
Proof.
move=> iu cu n; move: (@nonincreasing_cvgn_ge (- u_)).
rewrite -nondecreasing_opp opprK => /(_ iu); rewrite is_cvgNE => /(_ cu n).
by rewrite limN // lerNl opprK.
Qed.
Lemma cvg_has_ub u_ : cvgn u_ -> has_ubound [set `|u_ n| | n in setT].
Proof.
move=> /cvg_seq_bounded/pinfty_ex_gt0[M M_gt0 /= uM].
by exists M; apply/ubP => x -[n _ <-{x}]; exact: uM.
Qed.
Lemma cvg_has_sup u_ : cvgn u_ -> has_sup (u_ @` setT).
Proof.
move/cvg_has_ub; rewrite -/(_ @` _) -(image_comp u_ normr setT).
by move=> /has_ub_image_norm uM; split => //; exists (u_ 0%N), 0%N.
Qed.
Lemma cvg_has_inf u_ : cvgn u_ -> has_inf (u_ @` setT).
Proof. by move/is_cvgN/cvg_has_sup; rewrite -has_inf_supN image_comp. Qed.
Lemma __deprecated__cvgPpinfty_lt (u_ : R ^nat) :
u_ @ \oo --> +oo%R <-> forall A, \forall n \near \oo, (A < u_ n)%R.
Proof. exact: cvgryPgt. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `cvgryPgt`, and generalized to any proper filter")]
Notation cvgPpinfty_lt := __deprecated__cvgPpinfty_lt (only parsing).
Lemma __deprecated__cvgPninfty_lt (u_ : R ^nat) :
u_ @ \oo --> -oo%R <-> forall A, \forall n \near \oo, (A > u_ n)%R.
Proof. exact: cvgrNyPlt. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `cvgrNyPlt`, and generalized to any proper filter")]
Notation cvgPninfty_lt := __deprecated__cvgPninfty_lt (only parsing).
Lemma __deprecated__cvgPpinfty_near (u_ : R ^nat) :
u_ @ \oo --> +oo%R <-> \forall A \near +oo, \forall n \near \oo, (A <= u_ n)%R.
Proof. exact: cvgryPgey. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `cvgryPgey`, and generalized to any proper filter")]
Notation cvgPpinfty_near := __deprecated__cvgPpinfty_near (only parsing).
Lemma __deprecated__cvgPninfty_near (u_ : R ^nat) :
u_ @ \oo --> -oo%R <-> \forall A \near -oo, \forall n \near \oo, (A >= u_ n)%R.
Proof. exact: cvgrNyPleNy. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `cvgrNyPleNy`, and generalized to any proper filter")]
Notation cvgPninfty_near := __deprecated__cvgPninfty_near (only parsing).
Lemma __deprecated__cvgPpinfty_lt_near (u_ : R ^nat) :
u_ @ \oo --> +oo%R <-> \forall A \near +oo, \forall n \near \oo, (A < u_ n)%R.
Proof. exact: cvgryPgty. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `cvgryPgty`, and generalized to any proper filter")]
Notation cvgPpinfty_lt_near := __deprecated__cvgPpinfty_lt_near (only parsing).
Lemma __deprecated__cvgPninfty_lt_near (u_ : R ^nat) :
u_ @ \oo --> -oo%R <-> \forall A \near -oo, \forall n \near \oo, (A > u_ n)%R.
Proof. exact: cvgrNyPltNy. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `cvgrNyPltNy`, and generalized to any proper filter")]
Notation cvgPninfty_lt_near := __deprecated__cvgPninfty_lt_near (only parsing).
End sequences_R_lemmas_realFieldType.
#[deprecated(since="mathcomp-analysis 0.6.6",
note="renamed to `nonincreasing_cvgn_ge`")]
Notation nonincreasing_cvg_ge := nonincreasing_cvgn_ge (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
note="renamed to `nondecreasing_cvgn_le`")]
Notation nondecreasing_cvg_le := nondecreasing_cvgn_le (only parsing).
Lemma __deprecated__invr_cvg0 (R : realFieldType) (u : R^nat) :
(forall i, 0 < u i) -> ((u i)^-1 @[i --> \oo] --> 0) <-> (u @ \oo --> +oo).
Proof. by move=> ?; rewrite gtr0_cvgV0//; apply: nearW. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `gtr0_cvgV0` and generalized")]
Notation invr_cvg0 := __deprecated__invr_cvg0 (only parsing).
Lemma __deprecated__invr_cvg_pinfty (R : realFieldType) (u : R^nat) :
(forall i, 0 < u i) -> ((u i)^-1 @[i --> \oo] --> +oo) <-> (u @ \oo--> 0).
Proof. by move=> ?; rewrite cvgrVy//; apply: nearW. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="renamed to `cvgrVy` and generalized")]
Notation invr_cvg_pinfty := __deprecated__invr_cvg_pinfty (only parsing).
Section partial_sum.
Variables (V : zmodType) (u_ : V ^nat).
Definition series : V ^nat := [sequence \sum_(0 <= k < n) u_ k]_n.
Definition telescope : V ^nat := [sequence u_ n.+1 - u_ n]_n.
Lemma seriesEnat : series = [sequence \sum_(0 <= k < n) u_ k]_n.
Proof. by []. Qed.
Lemma seriesEord : series = [sequence \sum_(k < n) u_ k]_n.
Proof. by rewrite funeqE => n; rewrite /series/= big_mkord. Qed.
Lemma seriesSr n : series n.+1 = series n + u_ n.
Proof. by rewrite !seriesEord/= big_ord_recr. Qed.
Lemma seriesS n : series n.+1 = u_ n + series n.
Proof. by rewrite addrC seriesSr. Qed.
Lemma seriesSB (n : nat) : series n.+1 - series n = u_ n.
Proof. by rewrite seriesS addrK. Qed.
Lemma series_addn m n : series (n + m)%N = series m + \sum_(m <= k < n + m) u_ k.
Proof. by rewrite seriesEnat/= -big_cat_nat// leq_addl. Qed.
Lemma sub_series_geq m n : (m <= n)%N ->
series n - series m = \sum_(m <= k < n) u_ k.
Proof. by move=> /subnK<-; rewrite series_addn addrAC subrr add0r. Qed.
Lemma sub_series m n :
series n - series m = if (m <= n)%N then \sum_(m <= k < n) u_ k
else - \sum_(n <= k < m) u_ k.
Proof. by have [mn|/ltnW mn] := leqP m n; rewrite -sub_series_geq// opprB. Qed.
Lemma sub_double_series n : series n.*2 - series n = \sum_(n <= k < n.*2) u_ k.
Proof. by rewrite sub_series_geq// -addnn leq_addl. Qed.
End partial_sum.
Arguments series {V} u_ n : simpl never.
Arguments telescope {V} u_ n : simpl never.
Notation "[ 'series' E ]_ n" := (series [sequence E]_n) : ring_scope.
Lemma seriesN (V : zmodType) (f : V ^nat) : series (- f) = - series f.
Proof. by rewrite funeqE => n; rewrite /series /= sumrN. Qed.
Lemma seriesD (V : zmodType) (f g : V ^nat) : series (f + g) = series f + series g.
Proof. by rewrite /series /= funeqE => n; rewrite big_split. Qed.
Lemma seriesZ (R : ringType) (V : lmodType R) (f : V ^nat) k :
series (k *: f) = k *: series f.
Proof. by rewrite funeqE => n; rewrite /series /= -scaler_sumr. Qed.
Section partial_sum_numFieldType.
Variables V : numFieldType.
Implicit Types f g : V ^nat.
Lemma is_cvg_seriesN f : cvgn (series (- f)) = cvgn (series f).
Proof. by rewrite seriesN is_cvgNE. Qed.
Lemma lim_seriesN f : cvg (series f @ \oo) ->
limn (series (- f)) = - limn (series f).
Proof. by move=> cf; rewrite seriesN limN. Qed.
Lemma is_cvg_seriesZ f k : cvgn (series f) -> cvgn (series (k *: f)).
Proof. by move=> cf; rewrite seriesZ; exact: is_cvgZr. Qed.
Lemma lim_seriesZ f k : cvgn (series f) ->
limn (series (k *: f)) = k *: limn (series f).
Proof. by move=> cf; rewrite seriesZ limZr. Qed.
Lemma is_cvg_seriesD f g :
cvgn (series f) -> cvgn (series g) -> cvgn (series (f + g)).
Proof. by move=> cf cg; rewrite seriesD; exact: is_cvgD. Qed.
Lemma lim_seriesD f g : cvgn (series f) -> cvgn (series g) ->
limn (series (f + g)) = limn (series f) + limn (series g).
Proof. by move=> cf cg; rewrite seriesD limD. Qed.
Lemma is_cvg_seriesB f g :
cvgn (series f) -> cvgn (series g) -> cvgn (series (f - g)).
Proof. by move=> cf cg; apply: is_cvg_seriesD; rewrite ?is_cvg_seriesN. Qed.
Lemma lim_seriesB f g : cvg (series f @ \oo) -> cvg (series g @ \oo) ->
limn (series (f - g)) = limn (series f) - limn (series g).
Proof. by move=> Cf Cg; rewrite lim_seriesD ?is_cvg_seriesN// lim_seriesN. Qed.
End partial_sum_numFieldType.
Lemma lim_series_le (V : realFieldType) (f g : V ^nat) :
cvgn (series f) -> cvgn (series g) -> (forall n, f n <= g n) ->
limn (series f) <= limn (series g).
Proof.
by move=> cf cg fg; apply: (ler_lim cf cg); near=> x; rewrite ler_sum.
Unshelve. all: by end_near. Qed.
Lemma telescopeK (V : zmodType) (u_ : V ^nat) :
series (telescope u_) = [sequence u_ n - u_ 0%N]_n.
Proof. by rewrite funeqE => n; rewrite seriesEnat/= telescope_sumr. Qed.
Lemma seriesK (V : zmodType) : cancel (@series V) telescope.
Proof. move=> ?; exact/funext/seriesSB. Qed.
Lemma eq_sum_telescope (V : zmodType) (u_ : V ^nat) n :
u_ n = u_ 0%N + series (telescope u_) n.
Proof. by rewrite telescopeK/= addrC addrNK. Qed.
Section series_patched.
Variables (N : nat) (K : numFieldType) (V : normedModType K).
Implicit Types (f : nat -> V) (u : V ^nat) (l : V).
Lemma is_cvg_series_restrict u_ :
cvgn [sequence \sum_(N <= k < n) u_ k]_n = cvgn (series u_).
Proof.
suff -> : (fun n => \sum_(N <= k < n) u_ k) =
fun n => if (n <= N)%N then \sum_(N <= k < n) u_ k
else series u_ n - \sum_(0 <= k < N) u_ k.
by rewrite is_cvg_restrict/= is_cvgDlE//; apply: is_cvg_cst.
rewrite funeqE => n; case: leqP => // ltNn; apply: (canRL (addrK _)).
by rewrite seriesEnat addrC -big_cat_nat// ltnW.
Qed.
End series_patched.
Section sequences_R_lemmas.
Variable R : realType.
Lemma nondecreasing_cvgn (u_ : R ^nat) :
nondecreasing_seq u_ -> has_ubound (range u_) ->
u_ @ \oo --> sup (range u_).
Proof.
move=> leu u_ub; set M := sup (range u_).
have su_ : has_sup (range u_) by split => //; exists (u_ 0%N), 0%N.
apply/cvgrPdist_le => _/posnumP[e].
have [p Mu_p] : exists p, M - e%:num <= u_ p.
have [_ -[p _] <- /ltW Mu_p] := sup_adherent (gt0 e) su_.
by exists p; rewrite Mu_p.
near=> n; have pn : (p <= n)%N by near: n; exact: nbhs_infty_ge.
rewrite ler_distlC (le_trans Mu_p (leu _ _ _))//= (@le_trans _ _ M) ?lerDl//.
by have /ubP := sup_upper_bound su_; apply; exists n.
Unshelve. all: by end_near. Qed.
Lemma nondecreasing_is_cvgn (u_ : R ^nat) :
nondecreasing_seq u_ -> has_ubound (range u_) -> cvgn u_.
Proof. by move=> u_nd u_ub; apply: cvgP; exact: nondecreasing_cvgn. Qed.
Lemma nondecreasing_dvgn_lt (u_ : R ^nat) :
nondecreasing_seq u_ -> ~ cvgn u_ -> u_ @ \oo --> +oo.
Proof.
move=> nu du; apply: contrapT => /cvgryPge/existsNP[l lu]; apply: du.
apply: nondecreasing_is_cvgn => //; exists l => _ [n _ <-].
rewrite leNgt; apply/negP => lun; apply: lu; near=> m.
by rewrite (le_trans (ltW lun)) //; apply: nu; near: m; exists n.
Unshelve. all: by end_near. Qed.
Lemma near_nondecreasing_is_cvgn (u_ : R ^nat) (M : R) :
{near \oo, nondecreasing_seq u_} -> (\forall n \near \oo, u_ n <= M) ->
cvgn u_.
Proof.
move=> [k _ u_nd] [k' _ u_M].
suff : cvgn [sequence u_ (n + maxn k k')%N]_n.
by case/cvg_ex => /= l; rewrite cvg_shiftn => ul; apply/cvg_ex; exists l.
apply: nondecreasing_is_cvgn; [move=> /= m n mn|exists M => _ [n _ <-]].
by rewrite u_nd ?leq_add2r//= (leq_trans (leq_maxl _ _) (leq_addl _ _)).
by rewrite u_M //= (leq_trans (leq_maxr _ _) (leq_addl _ _)).
Qed.
Lemma nonincreasing_cvgn (u_ : R ^nat) :
nonincreasing_seq u_ -> has_lbound (range u_) ->
u_ @ \oo --> inf (u_ @` setT).
Proof.
rewrite -nondecreasing_opp => u_nd u_lb; rewrite -[X in X @ _ --> _](opprK u_).
apply: cvgN; rewrite image_comp; apply: nondecreasing_cvgn => //.
by move/has_lb_ubN : u_lb; rewrite image_comp.
Qed.
Lemma nonincreasing_is_cvgn (u_ : R ^nat) :
nonincreasing_seq u_ -> has_lbound (range u_) -> cvgn u_.
Proof. by move=> u_decr u_bnd; apply: cvgP; exact: nonincreasing_cvgn. Qed.
Lemma near_nonincreasing_is_cvgn (u_ : R ^nat) (m : R) :
{near \oo, nonincreasing_seq u_} -> (\forall n \near \oo, m <= u_ n) ->
cvgn u_.
Proof.
move=> u_ni u_m.
rewrite -(opprK u_); apply: is_cvgN; apply/(@near_nondecreasing_is_cvgn _ (- m)).
- by apply: filterS u_ni => x u_x y xy; rewrite lerNl opprK u_x.
- by apply: filterS u_m => x u_x; rewrite lerNl opprK.
Qed.
Lemma adjacent (u_ v_ : R ^nat) : nondecreasing_seq u_ -> nonincreasing_seq v_ ->
v_ - u_ @ \oo --> (0 : R) ->
[/\ limn v_ = limn u_, cvgn u_ & cvgn v_].
Proof.
set w_ := v_ - u_ => iu dv w0; have vu n : v_ n >= u_ n.
suff : limn w_ <= w_ n by rewrite (cvg_lim _ w0)// subr_ge0.
apply: (nonincreasing_cvgn_ge _ (cvgP _ w0)) => m p mp.
by rewrite lerB; rewrite ?iu ?dv.
have cu : cvgn u_.
apply: nondecreasing_is_cvgn => //; exists (v_ 0%N) => _ [n _ <-].
by rewrite (le_trans (vu _)) // dv.
have cv : cvgn v_.
apply: nonincreasing_is_cvgn => //; exists (u_ 0%N) => _ [n _ <-].
by rewrite (le_trans _ (vu _)) // iu.
by split=> //; apply/eqP; rewrite -subr_eq0 -limB //; exact/eqP/cvg_lim.
Qed.
End sequences_R_lemmas.
#[deprecated(since="mathcomp-analysis 0.6.6",
note="renamed to `nonincreasing_cvgn`")]
Notation nonincreasing_cvg := nonincreasing_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
note="renamed to `nondecreasing_cvgn`")]
Notation nondecreasing_cvg := nondecreasing_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
note="renamed to `nonincreasing_is_cvgn`")]
Notation nonincreasing_is_cvg := nonincreasing_is_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
note="renamed to `nondecreasing_is_cvgn`")]
Notation nondecreasing_is_cvg := nondecreasing_is_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
note="renamed to `nondecreasing_dvgn_lt`")]
Notation nondecreasing_dvg_lt := nondecreasing_dvgn_lt (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
note="renamed to `near_nondecreasing_is_cvgn`")]
Notation near_nondecreasing_is_cvg := near_nondecreasing_is_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
note="renamed to `near_nonincreasing_is_cvgn`")]
Notation near_nonincreasing_is_cvg := near_nonincreasing_is_cvgn (only parsing).
Definition harmonic {R : fieldType} : R ^nat := [sequence n.+1%:R^-1]_n.
Arguments harmonic {R} n /.
Lemma harmonic_gt0 {R : numFieldType} i : 0 < harmonic i :> R.
Proof. by rewrite /=. Qed.
Lemma harmonic_ge0 {R : numFieldType} i : 0 <= harmonic i :> R.
Proof. exact/ltW/harmonic_gt0. Qed.
Lemma cvg_harmonic {R : archiFieldType} : @harmonic R @ \oo --> 0.
Proof.
apply/cvgrPdist_le => _/posnumP[e]; near=> i.
rewrite distrC subr0 ger0_norm//= -lef_pV2 ?qualifE//= invrK.
rewrite (le_trans (ltW (archi_boundP _)))// ler_nat -add1n -leq_subLR.
by near: i; apply: nbhs_infty_ge.
Unshelve. all: by end_near. Qed.
Lemma cvge_harmonic {R : archiFieldType} : (EFin \o @harmonic R) @ \oo --> 0%E.
Proof. by apply: cvg_EFin; [exact: nearW | exact: cvg_harmonic]. Qed.
Lemma dvg_harmonic (R : numFieldType) : ~ cvgn (series (@harmonic R)).
Proof.
have ge_half n : (0 < n)%N -> 2^-1 <= \sum_(n <= i < n.*2) harmonic i.
case: n => // n _.
rewrite (@le_trans _ _ (\sum_(n.+1 <= i < n.+1.*2) n.+1.*2%:R^-1)) //=.
rewrite sumr_const_nat -addnn addnK addnn -mul2n natrM invfM.
by rewrite -[_ *+ n.+1]mulr_natr divfK.
by apply: ler_sum_nat => i /andP[? ?]; rewrite lef_pV2 ?qualifE/= ?ler_nat.
move/cvg_cauchy/cauchy_ballP => /(_ _ [gt0 of 2^-1 : R]); rewrite !near_map2.
rewrite -ball_normE => /nearP_dep hcvg; near \oo => n; near \oo => m.
have: `|series harmonic n - series harmonic m| < 2^-1 :> R by near: m; near: n.
rewrite le_gtF// distrC -[X in X - _](addrNK (series harmonic n.*2)).
rewrite sub_series_geq; last by near: m; apply: nbhs_infty_ge.
rewrite -addrA sub_series_geq -addnn ?leq_addr// addnn.
have sh_ge0 i j : 0 <= \sum_(i <= k < j) harmonic k :> R.
by rewrite ?sumr_ge0//; move=> k _; apply: harmonic_ge0.
by rewrite ger0_norm// ler_wpDl// ge_half//; near: n.
Unshelve. all: by end_near. Qed.
Definition arithmetic_mean (R : numDomainType) (u_ : R ^nat) : R ^nat :=
[sequence n.+1%:R^-1 * (series u_ n.+1)]_n.
Definition harmonic_mean (R : numDomainType) (u_ : R ^nat) : R ^nat :=
let v := [sequence (u_ n)^-1]_n in
[sequence (n.+1%:R / series v n.+1)]_n.
Definition root_mean_square (R : realType) (u_ : R ^nat) : R ^nat :=
let v_ := [sequence (u_ k)^+2]_k in
[sequence Num.sqrt (n.+1%:R^-1 * series v_ n.+1)]_n.
Section cesaro.
Variable R : archiFieldType.
Theorem cesaro (u_ : R ^nat) (l : R) : u_ @ \oo --> l ->
arithmetic_mean u_ @ \oo --> l.
Proof.
move=> u0_cvg; have ssplit v_ m n : (m <= n)%N -> `|n%:R^-1 * series v_ n| <=
n%:R^-1 * `|series v_ m| + n%:R^-1 * `|\sum_(m <= i < n) v_ i|.
move=> /subnK<-; rewrite series_addn mulrDr (le_trans (ler_normD _ _))//.
by rewrite !normrM ger0_norm.
apply/cvgrPdist_lt=> _/posnumP[e]; near \oo => m; near=> n.
have {}/ssplit -/(_ _ [sequence l - u_ n]_n) : (m.+1 <= n.+1)%nat.
by near: n; exists m.
rewrite !seriesEnat /= big_split/=.
rewrite sumrN mulrBr sumr_const_nat -(mulr_natl l) mulKf//.
move=> /le_lt_trans->//; rewrite [e%:num]splitr ltrD//.
have [->|neq0] := eqVneq (\sum_(0 <= k < m.+1) (l - u_ k)) 0.
by rewrite normr0 mulr0.
rewrite -ltr_pdivlMr ?normr_gt0//.
rewrite -ltf_pV2 ?qualifE//= ?mulr_gt0 ?invr_gt0 ?normr_gt0// invrK.
rewrite (lt_le_trans (archi_boundP _))// ler_nat leqW//.
by near: n; apply: nbhs_infty_ge.
rewrite ltr_pdivrMl ?ltr0n // (le_lt_trans (ler_norm_sum _ _ _)) //.
rewrite (le_lt_trans (@ler_sum_nat _ _ _ _ (fun i => e%:num / 2) _))//; last first.
by rewrite sumr_const_nat mulr_natl ltr_pMn2l// ltn_subrL.
move=> i /andP[mi _]; move: i mi; near: m.
have : \forall x \near \oo, `|l - u_ x| < e%:num / 2.
by move/cvgrPdist_lt : u0_cvg; apply.
move=> -[N _ Nu]; exists N => // k Nk i ki.
by rewrite ltW// Nu//= (leq_trans Nk)// ltnW.
Unshelve. all: by end_near. Qed.
End cesaro.
Section cesaro_converse.
Variable R : archiFieldType.
Let cesaro_converse_off_by_one (u_ : R ^nat) :
[sequence n.+1%:R^-1 * series u_ n.+1]_n @ \oo --> (0 : R) ->
[sequence n.+1%:R^-1 * series u_ n]_n @ \oo --> (0 : R).
Proof.
move=> H; apply/cvgrPdist_lt => _/posnumP[e].
move/cvgrPdist_lt : H => /(_ _ (gt0 e)) -[m _ mu].
near=> n; rewrite sub0r normrN /=.
have /andP[n0] : ((0 < n) && (m <= n.-1))%N.
near: n; exists m.+1 => // k mk; rewrite (leq_trans _ mk) //=.
by rewrite -(leq_add2r 1%N) !addn1 prednK // (leq_trans _ mk).
move/mu => {mu}; rewrite sub0r normrN /= prednK //; apply: le_lt_trans.
rewrite !normrM ler_wpM2r // ger0_norm // ger0_norm //.
by rewrite lef_pV2 // ?ler_nat // posrE // ltr0n.
Unshelve. all: by end_near. Qed.
Lemma cesaro_converse (u_ : R ^nat) (l : R) :
telescope u_ =o_\oo @harmonic R ->
arithmetic_mean u_ @ \oo --> l -> u_ @ \oo --> l.
Proof.
pose a_ := telescope u_ => a_o u_l.
suff abel : forall n,
u_ n - arithmetic_mean u_ n = \sum_(1 <= k < n.+1) k%:R / n.+1%:R * a_ k.-1.
suff K : u_ - arithmetic_mean u_ @ \oo --> (0 : R).
rewrite -(add0r l).
rewrite (_ : u_ = u_ - arithmetic_mean u_ + arithmetic_mean u_); last first.
by rewrite funeqE => n; rewrite subrK.
exact: cvgD.
rewrite (_ : _ - arithmetic_mean u_ =
(fun n => \sum_(1 <= k < n.+1) k%:R / n.+1%:R * a_ k.-1)); last first.
by rewrite funeqE.
rewrite {abel} /= (_ : (fun _ => _) =
fun n => n.+1%:R^-1 * \sum_(0 <= k < n) k.+1%:R * a_ k); last first.
rewrite funeqE => n; rewrite big_add1 /= /= big_distrr /=.
by apply eq_bigr => i _; rewrite mulrCA mulrA.
have {}a_o : [sequence n.+1%:R * telescope u_ n]_n @ \oo --> (0 : R).
apply: (@eqolim0 _ _ _ eventually_filterType).
rewrite a_o.
set h := 'o_\oo (@harmonic R).
apply/eqoP => _/posnumP[e] /=.
near=> n; rewrite normr1 mulr1 normrM -ler_pdivlMl// ?normr_gt0//.
rewrite mulrC -normrV ?unitfE //.
near: n.
by case: (eqoP eventually_filterType (@harmonic R) h) => Hh _; apply Hh.
move: (cesaro a_o); rewrite /arithmetic_mean /series /= -/a_.
exact: (@cesaro_converse_off_by_one (fun k => k.+1%:R * a_ k)).
case => [|n].
rewrite /arithmetic_mean/= invr1 mul1r !seriesEnat/=.
by rewrite big_nat1 subrr big_geq.
rewrite /arithmetic_mean /= seriesEnat /= big_nat_recl //=.
under eq_bigr do rewrite eq_sum_telescope.
rewrite big_split /= big_const_nat iter_addr addr0 addrA -mulrS mulrDr.
rewrite -(mulr_natl (u_ O)) mulrA mulVr ?unitfE ?pnatr_eq0 // mul1r opprD addrA.
rewrite eq_sum_telescope (addrC (u_ O)) addrK.
rewrite [X in _ - _ * X](_ : _ =
\sum_(0 <= i < n.+1) \sum_(0 <= k < n.+1 | (k < i.+1)%N) a_ k); last first.
rewrite !big_mkord; apply: eq_bigr => i _.
by rewrite seriesEord/= big_mkord -big_ord_widen.
rewrite (exchange_big_dep_nat xpredT) //=.
rewrite [X in _ - _ * X](_ : _ =
\sum_(0 <= i < n.+1) \sum_(i <= j < n.+1) a_ i ); last first.
apply: congr_big_nat => //= i ni.
rewrite big_const_nat iter_addr addr0 -big_filter.
rewrite big_const_seq iter_addr addr0; congr (_ *+ _).
rewrite /index_iota subn0 -[in LHS](subnKC (ltnW ni)) iotaD filter_cat.
rewrite count_cat (_ : [seq _ <- _ | _] = [::]); last first.
rewrite -(filter_pred0 (iota 0 i)); apply: eq_in_filter => j.
by rewrite mem_iota leq0n andTb add0n => ji; rewrite ltnNge ji.
rewrite 2!add0n (_ : [seq _ <- _ | _] = iota i (n.+1 - i)); last first.
rewrite -[RHS]filter_predT; apply: eq_in_filter => j.
rewrite mem_iota => /andP[ij]; rewrite subnKC; last exact/ltnW.
by move=> jn; rewrite ltnS ij.
by rewrite count_predT size_iota.
rewrite [X in _ - _ * X](_ : _ =
\sum_(0 <= i < n.+1) a_ i * (n.+1 - i)%:R); last first.
by apply: eq_bigr => i _; rewrite big_const_nat iter_addr addr0 mulr_natr.
rewrite big_distrr /= big_mkord (big_morph _ (@opprD _) (@oppr0 _)).
rewrite seriesEord -big_split /= big_add1 /= big_mkord; apply: eq_bigr => i _.
rewrite mulrCA -[X in X - _]mulr1 -mulrBr [RHS]mulrC; congr (_ * _).
rewrite -[X in X - _](@divrr _ (n.+2)%:R) ?unitfE ?pnatr_eq0 //.
rewrite [in X in _ - X]mulrC -mulrBl; congr (_ / _).
rewrite -natrB; last by rewrite (@leq_trans n.+1) // leq_subr.
rewrite subnBA; by [rewrite addSnnS addnC addnK | rewrite ltnW].