-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathcantor.v
550 lines (479 loc) · 22.4 KB
/
cantor.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From mathcomp Require Import all_ssreflect ssralg ssrint ssrnum interval rat.
From mathcomp Require Import finmap.
From mathcomp Require Import mathcomp_extra boolp classical_sets functions.
From mathcomp Require Import cardinality.
Require Import reals signed topology.
From HB Require Import structures.
(***md*************************************************************************)
(* # The Cantor Space and Applications *)
(* *)
(* This file develops the theory of the Cantor space, that is bool^nat with *)
(* the product topology. The two main theorems proved here are *)
(* homeomorphism_cantor_like, and cantor_surj, a.k.a. Alexandroff-Hausdorff. *)
(* *)
(* ``` *)
(* cantor_space == the Cantor space, with its canonical metric *)
(* cantor_like T == perfect + compact + hausdroff + zero dimensional *)
(* pointed_discrete T == equips T with the discrete topology *)
(* tree_of T == builds a topological tree with levels (T n) *)
(* ``` *)
(* *)
(* The overall goal of the next few sections is to prove that *)
(* Every compact metric space `T` is the image of the Cantor space. *)
(* The overall proof will build two continuous functions *)
(* Cantor space -> a bespoke tree for `T` -> `T` *)
(* *)
(* The proof is in 4 parts: *)
(* - Part 1: Some generic machinery about continuous functions from trees. *)
(* - Part 2: All cantor-like spaces are homeomorphic to the Cantor space. *)
(* (an application of part 1) *)
(* - Part 3: Finitely branching trees are Cantor-like. *)
(* - Part 4: Every compact metric space has a finitely branching tree with *)
(* a continuous surjection. (a second application of part 1) *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldTopology.Exports.
Local Open Scope classical_set_scope.
Definition cantor_space :=
product_uniformType (fun _ : nat => @discrete_uniformType _ discrete_bool).
Definition cantor_like (T : topologicalType) :=
[/\ perfect_set [set: T],
compact [set: T],
hausdorff_space T &
zero_dimensional T].
Lemma cantor_space_compact : compact [set: cantor_space].
Proof.
have := @tychonoff _ (fun _ : nat => _) _ (fun=> bool_compact).
by congr (compact _); rewrite eqEsubset.
Qed.
Lemma cantor_space_hausdorff : hausdorff_space cantor_space.
Proof. by apply: hausdorff_product => ?; exact: discrete_hausdorff. Qed.
Lemma cantor_zero_dimensional : zero_dimensional cantor_space.
Proof. by apply: zero_dimension_prod => _; exact: discrete_zero_dimension. Qed.
Lemma cantor_perfect : perfect_set [set: cantor_space].
Proof. by apply: perfect_diagonal => _; exists (true, false). Qed.
Lemma cantor_like_cantor_space : cantor_like cantor_space.
Proof.
split.
- exact: cantor_perfect.
- exact: cantor_space_compact.
- exact: cantor_space_hausdorff.
- exact: cantor_zero_dimensional.
Qed.
(***md*************************************************************************)
(* ## Part 1 *)
(* *)
(* A tree here has countable levels, and nodes of type `K n` on the nth *)
(* level. *)
(* Each level is in the 'discrete' topology, so the nodes are independent. *)
(* The goal is to build a map from branches to X. *)
(* 1. Each level of the tree corresponds to an approximation of `X`. *)
(* 2. Each level refines the previous approximation. *)
(* 3. Then each branch has a corresponding Cauchy filter. *)
(* 4. The overall function from branches to X is a continuous surjection. *)
(* 5. With an extra disjointness condition, this is also an injection *)
(* *)
(******************************************************************************)
Section topological_trees.
Context {K : nat -> topologicalType} {X : topologicalType}
(refine_apx : forall n, set X -> K n -> set X)
(tree_invariant : set X -> Prop).
Hypothesis cmptX : compact [set: X].
Hypothesis hsdfX : hausdorff_space X.
Hypothesis discreteK : forall n, discrete_space (K n).
Hypothesis refine_cover : forall n U, U = \bigcup_e @refine_apx n U e.
Hypothesis refine_invar : forall n U e,
tree_invariant U -> tree_invariant (@refine_apx n U e).
Hypothesis invar_n0 : forall U, tree_invariant U -> U !=set0.
Hypothesis invarT : tree_invariant [set: X].
Hypothesis invar_cl : tree_invariant `<=` closed.
Hypothesis refine_separates: forall x y : X, x != y ->
exists n, forall (U : set X) e,
@refine_apx n U e x -> ~@refine_apx n U e y.
Let refine_subset n U e : @refine_apx n U e `<=` U.
Proof. by rewrite [X in _ `<=` X](refine_cover n); exact: bigcup_sup. Qed.
Let T := product_topologicalType K.
Local Fixpoint branch_apx (b : T) n :=
if n is m.+1 then refine_apx (branch_apx b m) (b m) else [set: X].
Let tree_mapF b := filter_from [set: nat] (branch_apx b).
Let tree_map_invar b n : tree_invariant (branch_apx b n).
Proof. by elim: n => // n ?; exact: refine_invar. Qed.
Let tree_map_sub b i j : (i <= j)%N -> branch_apx b j `<=` branch_apx b i.
Proof.
elim: j i => [?|j IH i]; first by rewrite leqn0 => /eqP ->.
rewrite leq_eqVlt => /predU1P[->//|/IH].
by apply: subset_trans; exact: refine_subset.
Qed.
Instance tree_map_filter b : ProperFilter (tree_mapF b).
Proof.
split; first by case => n _ P; case: (invar_n0 (tree_map_invar b n)) => x /P.
apply: filter_from_filter; first by exists 0%N.
move=> i j _ _; exists (maxn i j) => //; rewrite subsetI.
by split; apply: tree_map_sub; [exact: leq_maxl | exact: leq_maxr].
Qed.
Let tree_map b := lim (tree_mapF b).
Let cvg_tree_map b : cvg (tree_mapF b).
Proof.
have [|x [_ clx]] := cmptX (tree_map_filter b); first exact: filterT.
apply/cvg_ex; exists x => /=; apply: (compact_cluster_set1 _ cmptX) => //.
- exact: filterT.
- exact: filterT.
rewrite eqEsubset; split=> [y cly|? -> //].
have [->//|/refine_separates[n sep]] := eqVneq x y.
have bry : branch_apx b n.+1 y.
have /closure_id -> := invar_cl (tree_map_invar b n.+1).
by move: cly; rewrite clusterE; apply; exists n.+1.
suff /sep : branch_apx b n.+1 x by [].
have /closure_id -> := invar_cl (tree_map_invar b n.+1).
by move: clx; rewrite clusterE; apply; exists n.+1.
Qed.
Local Lemma tree_map_surj : set_surj [set: T] [set: X] tree_map.
Proof.
move=> z _; suff : exists g, forall n, branch_apx g n z.
case=> g gnz; exists g => //; apply: close_eq => // U [oU Uz] V ngV; exists z.
by split => //; have [n _] := @cvg_tree_map g _ ngV; exact.
have zcov' : forall n (U : set X), exists e, U z -> @refine_apx n U e z.
move=> n U; have [|?] := pselect (U z); last by exists point.
by rewrite [X in X z -> _](@refine_cover n U); case => e _ ?; exists e.
pose zcov n U := projT1 (cid (zcov' n U)).
pose fix g n : K n * set X :=
if n is m.+1
then (zcov m.+1 (g m).2, @refine_apx m.+1 (g m).2 (zcov m.+1 (g m).2))
else (zcov O [set: X], @refine_apx O [set: X] (zcov O [set: X])).
pose g' n := (g n).1; have apxg n : branch_apx g' n.+1 = (g n).2.
by elim: n => //= n ->.
exists g'; elim => // n /= IH.
have /(_ IH) := projT2 (cid (zcov' n (branch_apx g' n))).
by case: n {IH} => // n; rewrite apxg.
Qed.
Let tree_prefix (b : T) (n : nat) :
\forall c \near b, forall i, (i < n)%N -> b i = c i.
Proof.
elim: n => [|n IH]; first by near=> z => ?; rewrite ltn0.
near=> z => i; rewrite leq_eqVlt => /predU1P[|iSn]; last by rewrite (near IH z).
move=> [->]; near: z; exists (proj n @^-1` [set b n]).
split => //; suff : @open T (proj n @^-1` [set b n]) by [].
by apply: open_comp; [move=> + _; exact: proj_continuous| exact: discrete_open].
Unshelve. all: end_near. Qed.
Let apx_prefix b c n :
(forall i, (i < n)%N -> b i = c i) -> branch_apx b n = branch_apx c n.
Proof.
elim: n => //= n IH inS; rewrite IH; first by rewrite inS.
by move=> ? ?; exact/inS/ltnW.
Qed.
Let tree_map_apx b n : branch_apx b n (tree_map b).
Proof.
apply: (@closed_cvg _ _ _ (tree_map_filter b)); last exact: cvg_tree_map.
by apply: invar_cl; exact: tree_map_invar.
by exists n.
Qed.
Local Lemma tree_map_cts : continuous tree_map.
Proof.
move=> b U /cvg_tree_map [n _] /filterS; apply.
exact/fmap_filter/nbhs_filter.
rewrite nbhs_simpl /=; near_simpl; have := tree_prefix b n; apply: filter_app.
by near=> z => /apx_prefix ->; exact: tree_map_apx.
Unshelve. all: end_near. Qed.
Let tree_map_setI x y n : tree_map x = tree_map y ->
refine_apx (branch_apx x n) (x n) `&` refine_apx (branch_apx y n) (y n) !=set0.
Proof.
move=> xyE; exists (tree_map y); split.
by rewrite -xyE -/(branch_apx x n.+1); exact: tree_map_apx.
by rewrite -/(branch_apx y n.+1); exact: tree_map_apx.
Qed.
Local Lemma tree_map_inj : (forall n U, trivIset [set: K n] (@refine_apx n U)) ->
set_inj [set: T] tree_map.
Proof.
move=> triv x y _ _ xyE; apply: functional_extensionality_dep => n.
suff : forall n, branch_apx x n = branch_apx y n.
move=> brE; apply: (@triv n (branch_apx x n) _ _ I I).
by rewrite [in X in _ `&` X]brE; exact: tree_map_setI.
elim => // m /= brE.
rewrite (@triv m (branch_apx x m) (x m) (y m) I I) 1?brE//.
by rewrite -[in X in X `&` _]brE; exact: tree_map_setI.
Qed.
Lemma tree_map_props : exists f : T -> X,
[/\ continuous f,
set_surj [set: T] [set: X] f &
(forall n U, trivIset [set: K n] (@refine_apx n U)) ->
set_inj [set: T] f].
Proof.
exists tree_map; split.
- exact: tree_map_cts.
- exact: tree_map_surj.
- exact: tree_map_inj.
Qed.
End topological_trees.
(***md*************************************************************************)
(* ## Part 2 *)
(* We can use `tree_map_props` to build a homeomorphism from the *)
(* cantor_space to a Cantor-like space T. *)
(******************************************************************************)
Section TreeStructure.
Context {R : realType} {T : pseudoMetricType R}.
Hypothesis cantorT : cantor_like T.
Let dsctT : zero_dimensional T. Proof. by case: cantorT. Qed.
Let pftT : perfect_set [set: T]. Proof. by case: cantorT. Qed.
Let cmptT : compact [set: T]. Proof. by case: cantorT. Qed.
Let hsdfT : @hausdorff_space T. Proof. by case: cantorT. Qed.
Let c_invar (U : set T) := clopen U /\ U !=set0.
Let U_ := unsquash (clopen_surj cmptT).
Let split_clopen' (U : set T) : exists V,
open U -> U !=set0 -> [/\ clopen V, V `&` U !=set0 & ~`V `&` U !=set0].
Proof.
have [oU|?] := pselect (open U); last by exists point.
have [Un0|?] := pselect (U !=set0); last by exists point.
have [x [y] [Ux] Uy xny] := (iffLR perfect_set2) pftT U oU Un0.
have [V [clV Vx Vy]] := dsctT xny; exists V => _ _.
by split => //; [exists x | exists y].
Qed.
Let split_clopen (U : set T) := projT1 (cid (split_clopen' U)).
Let c_ind n (V : set T) (b : bool) :=
let Wn :=
if pselect ((U_ n) `&` V !=set0 /\ ~` (U_ n) `&` V !=set0)
then U_ n else split_clopen V in
(if b then Wn else ~` Wn) `&` V.
Local Lemma cantor_map : exists f : cantor_space -> T,
[/\ continuous f,
set_surj [set: cantor_space] [set: T] f &
set_inj [set: cantor_space] f ].
Proof.
have [] := @tree_map_props
(fun=> [topologicalType of bool]) T c_ind c_invar cmptT hsdfT.
- by [].
- move=> n V; rewrite eqEsubset; split => [t Vt|t [? ? []]//].
have [?|?] := pselect (U_ n `&` V !=set0 /\ ~` U_ n `&` V !=set0).
+ have [Unt|Unt] := pselect (U_ n t).
* by exists true => //; rewrite /c_ind; case: pselect.
* by exists false => //; rewrite /c_ind; case: pselect.
+ have [scVt|scVt] := pselect (split_clopen V t).
* by exists true => //; rewrite /c_ind; case: pselect.
* by exists false => //; rewrite /c_ind; case: pselect.
- move=> n U e [] clU Un0; rewrite /c_ind; case: pselect => /=.
+ move=> [UU CUU]; case: e => //; split => //; apply: clopenI => //.
exact: funS.
by apply: clopenC => //; exact: funS.
+ move=> _; have [|//|clscU scUU CscUU] := projT2 (cid (split_clopen' U)).
by case: clU.
case: e; split => //; first exact: clopenI.
by apply: clopenI => //; exact: clopenC.
- by move=> ? [].
- by split; [exact: clopenT | exists point].
- by move=> ? [[]].
- move=> x y /dsctT [A [clA Ax Any]].
have [n _ UnA] := @surj _ _ _ _ U_ _ clA; exists n => V e.
have [|+ _] := pselect (V y); last by apply: subsetC => ? [].
have [Vx Vy|? _ []//] := pselect (V x).
rewrite {1 2}/c_ind; case: pselect => /=; rewrite ?UnA.
by move=> _; case: e; case => // ? ?; apply/not_andP; left.
by apply: absurd; split; [exists x | exists y].
- move=> f [ctsf surjf injf]; exists f; split => //; apply: injf.
by move=> n U i j _ _ [z] [] [] + Uz [+ _]; move: i j => [] [].
Qed.
Let tree_map := projT1 (cid cantor_map).
Let tree_map_bij : bijective tree_map.
Proof.
by rewrite -setTT_bijective; have [? ? ?] := projT2 (cid cantor_map); split.
Qed.
#[local] HB.instance Definition _ := @BijTT.Build _ _ _ tree_map_bij.
Lemma homeomorphism_cantor_like :
exists f : {splitbij [set: cantor_space] >-> [set: T]},
continuous f /\ (forall A, closed A -> closed (f @` A)).
Proof.
exists [the {splitbij _ >-> _} of tree_map] => /=.
have [cts surj inje] := projT2 (cid cantor_map); split; first exact: cts.
move=> A clA; apply: (compact_closed hsdfT).
apply: (@continuous_compact _ _ tree_map); first exact: continuous_subspaceT.
apply: (@subclosed_compact _ _ [set: cantor_space]) => //.
exact: cantor_space_compact.
Qed.
End TreeStructure.
(***md*************************************************************************)
(* ## Part 3: Finitely branching trees are Cantor-like *)
(******************************************************************************)
Section FinitelyBranchingTrees.
Context {R : realType}.
Definition pointed_discrete (P : pointedType) : pseudoMetricType R :=
@discrete_pseudoMetricType R
(@discrete_uniformType (TopologicalType
(FilteredType P P principal_filter)
discrete_topological_mixin)
erefl) erefl.
Definition tree_of (T : nat -> pointedType) : pseudoMetricType R :=
@product_pseudoMetricType R _
(fun n => pointed_discrete (T n))
(countableP _).
Lemma cantor_like_finite_prod (T : nat -> topologicalType) :
(forall n, finite_set [set: pointed_discrete (T n)]) ->
(forall n, (exists xy : T n * T n, xy.1 != xy.2)) ->
cantor_like (tree_of T).
Proof.
move=> finiteT twoElems; split.
- exact/(@perfect_diagonal (pointed_discrete \o T))/twoElems.
- have := tychonoff (fun n => finite_compact (finiteT n)).
by congr (compact _) => //=; rewrite eqEsubset.
- apply: (@hausdorff_product _ (pointed_discrete \o T)) => n.
exact: discrete_hausdorff.
- by apply zero_dimension_prod => ?; exact: discrete_zero_dimension.
Qed.
End FinitelyBranchingTrees.
Local Notation "A ^-1" := ([set xy | A (xy.2, xy.1)]) : classical_set_scope.
(***md*************************************************************************)
(* ## Part 4: Building a finitely branching tree to cover `T` *)
(******************************************************************************)
Section alexandroff_hausdorff.
Context {R : realType} {T : pseudoMetricType R}.
Hypothesis cptT : compact [set: T].
Hypothesis hsdfT : hausdorff_space T.
Section two_pointed.
Context (t0 t1 : T).
Hypothesis T2e : t0 != t1.
Let ent_balls' (E : set (T * T)) :
exists M : set (set T), entourage E -> [/\
finite_set M,
forall A, M A -> exists a, A a /\
A `<=` closure [set y | split_ent E (a, y)],
exists A B : set T, M A /\ M B /\ A != B,
\bigcup_(A in M) A = [set: T] &
M `<=` closed].
Proof.
have [entE|?] := pselect (entourage E); last by exists point.
move: cptT; rewrite compact_cover.
pose fs x := interior [set y | split_ent E (x, y)].
move=> /(_ T [ set: T] fs)[t _|t _ |].
- exact: open_interior.
- exists t => //.
by rewrite /fs /interior -nbhs_entourageE; exists (split_ent E).
move=> M' _ Mcov; exists
((closure \o fs) @` [set` M'] `|` [set [set t0]; [set t1]]).
move=> _; split=> [|A [|]| | |].
- rewrite finite_setU; split; first exact/finite_image/finite_fset.
exact: finite_set2.
- move=> [z M'z] <-; exists z; split.
+ apply: subset_closure; apply: nbhs_singleton; apply: nbhs_interior.
by rewrite -nbhs_entourageE; exists (split_ent E).
+ by apply: closure_subset; exact: interior_subset.
- by case => ->; [exists t0 | exists t1]; split => // t ->;
apply: subset_closure; exact: entourage_refl.
- exists [set t0], [set t1]; split;[|split].
+ by right; left.
+ by right; right.
+ apply/eqP; rewrite eqEsubset => -[] /(_ t0 erefl).
by move: T2e => /[swap] -> /eqP.
- rewrite -subTset => t /Mcov [t' M't' fsxt]; exists (closure (fs t')).
by left; exists t'.
exact: subset_closure.
- move=> ? [[? ?] <-|]; first exact: closed_closure.
by move=> [|] ->; exact/accessible_closed_set1/hausdorff_accessible.
Qed.
Let ent_balls E := projT1 (cid (ent_balls' E)).
Let count_unif' := cid2
((iffLR countable_uniformityP) (@countable_uniformity_metric _ T)).
Let count_unif := projT1 count_unif'.
Let ent_count_unif n : entourage (count_unif n).
Proof.
have := projT2 (cid (ent_balls' (count_unif n))).
rewrite /count_unif; case: count_unif'.
by move=> /= f fnA fnE; case /(_ (fnE _)) => _ _ _ + _; rewrite -subTset.
Qed.
Let count_unif_sub E : entourage E -> exists N, count_unif N `<=` E.
Proof.
by move=> entE; rewrite /count_unif; case: count_unif' => f + ? /=; exact.
Qed.
Let K' n : Type := @sigT (set T) (ent_balls (count_unif n)).
Let K'p n : K' n.
Proof.
apply: cid; have [//| _ _ _ + _] := projT2 (cid (ent_balls' (count_unif n))).
by rewrite -subTset => /(_ point I) [W Q ?]; exists W; exact: Q.
Qed.
Let K n := PointedType (classicType_choiceType (K' n)) (K'p n).
Let Tree := @tree_of R K.
Let embed_refine n (U : set T) (k : K n) :=
(if pselect (projT1 k `&` U !=set0)
then projT1 k
else if pselect (exists e : K n , projT1 e `&` U !=set0) is left e
then projT1 (projT1 (cid e))
else set0) `&` U.
Let embed_invar (U : set T) := closed U /\ U !=set0.
Let Kn_closed n (e : K n) : closed (projT1 e).
Proof.
case: e => W; have [//| _ _ _ _] := projT2 (cid (ent_balls' (count_unif n))).
exact.
Qed.
Local Lemma cantor_surj_pt1 : exists2 f : Tree -> T,
continuous f & set_surj [set: Tree] [set: T] f.
Proof.
pose entn n := projT2 (cid (ent_balls' (count_unif n))).
have [//| | |? []//| |? []// | |] := @tree_map_props (@pointed_discrete R \o K)
T (embed_refine) (embed_invar) cptT hsdfT.
- move=> n U; rewrite eqEsubset; split=> [t Ut|t [? ? []]//].
have [//|_ _ _ + _] := entn n; rewrite -subTset.
move=> /(_ t I)[W cbW Wt]; exists (existT _ W cbW) => //.
by rewrite /embed_refine; case: pselect => //=; apply: absurd; exists t.
- move=> n U e [clU Un0]; split.
apply: closedI => //; case: pselect => //= ?.
by case: pselect => ?; [exact: Kn_closed|exact: closed0].
rewrite /embed_refine; case: pselect => //= ?; case: pselect.
by case=> i [z [pz bz]]; set P := cid _; have := projT2 P; apply.
case: Un0 => z Uz; apply: absurd.
have [//|_ _ _ + _] := entn n; rewrite -subTset; move=> /(_ z I)[i bi iz].
by exists (existT _ _ bi), z.
- by split; [exact: closedT | exists point].
- move=> x y xny; move: hsdfT; rewrite open_hausdorff.
move=> /(_ _ _ xny)[[U V]] /= [/set_mem Ux /set_mem Vy] [+ oV UVI0].
rewrite openE => /(_ _ Ux); rewrite /interior -nbhs_entourageE => -[E entE ExU].
have [//| n ctE] :=
@count_unif_sub (split_ent E `&` (split_ent E)^-1%classic).
exact: filterI.
exists n => B [C ebC]; have [//|_ Csub _ _ _ embx emby] := entn n.
have [[D cbD] /= Dx Dy] : exists2 e : K n, projT1 e x & projT1 e y.
move: embx emby; rewrite /embed_refine; case: pselect => /=.
by move=> ? [? ?] [? ?]; exists (existT _ _ ebC).
case: pselect; last by move => ? ? [].
by move=> e _ [? ?] [? ?]; exists (projT1 (cid e)).
suff : E (x, y) by move/ExU; move/eqP/disjoints_subset: UVI0 => /[apply].
have [z [Dz DzE]] := Csub _ cbD.
have /ent_closure:= DzE _ Dx => /(_ (ent_count_unif n))/ctE [_ /= Exz].
have /ent_closure:= DzE _ Dy => /(_ (ent_count_unif n))/ctE [Ezy _].
exact: (@entourage_split [uniformType of T] z).
by move=> f [ctsf surjf _]; exists f.
Qed.
Local Lemma cantor_surj_pt2 :
exists f : {surj [set: cantor_space] >-> [set: Tree]}, continuous f.
Proof.
have [|f [ctsf _]] := @homeomorphism_cantor_like R Tree; last by exists f.
apply: (@cantor_like_finite_prod _ (@pointed_discrete R \o K)) => [n /=|n].
have [//| fs _ _ _ _] := projT2 (cid (ent_balls' (count_unif n))).
suff -> : [set: {classic K' n}] =
(@projT1 (set T) _) @^-1` (projT1 (cid (ent_balls' (count_unif n)))).
by apply: finite_preimage => // ? ? _ _; exact: eq_sigT_hprop.
by rewrite eqEsubset; split => // -[].
have [//| _ _ [A [B [pA [pB AB]]]] _ _] :=
projT2 (cid (ent_balls' (count_unif n))).
exists (existT _ _ pA, existT _ _ pB) => /=.
by move: AB; apply: contra_neq => -[].
Qed.
Local Lemma cantor_surj_twop :
exists f : {surj [set: cantor_space] >-> [set: T]}, continuous f.
Proof.
move: cantor_surj_pt2 cantor_surj_pt1 => -[f ctsf] [g ctsg /Psurj[sjg gsjg]].
exists [surj of sjg \o f] => z.
by apply continuous_comp; [exact: ctsf|rewrite -gsjg; exact: ctsg].
Qed.
End two_pointed.
(** The Alexandroff-Hausdorff theorem *)
Theorem cantor_surj :
exists f : {surj [set: cantor_space] >-> [set: T]}, continuous f.
Proof.
have [[p ppt]|/forallNP xpt] := pselect (exists p : T, p != point).
by apply: cantor_surj_twop; exact: ppt.
have /Psurj[f cstf] : set_surj [set: cantor_space] [set: T] (cst point).
by move=> q _; exists point => //; have /negP/negPn/eqP -> := xpt q.
by exists f; rewrite -cstf; exact: cst_continuous.
Qed.
End alexandroff_hausdorff.