-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_hmdb51.py
executable file
·186 lines (164 loc) · 7.33 KB
/
eval_hmdb51.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import json
import os
import sys
import numpy as np
import pandas as pd
def eval_hmdb51(epoch_output_path, annotation_path, prediction_path, test_subset, top_k, epoch):
hmdb_classification = HMDBclassification(epoch_output_path, annotation_path, prediction_path, subset=test_subset, top_k=top_k)
hmdb_classification.evaluate(epoch_output_path)
accuracy = hmdb_classification.hit_at_k
error = hmdb_classification.error
if epoch_output_path:
f = open(epoch_output_path, 'a')
f.write("Acc: " + str(hmdb_classification.hit_at_k))
f.close()
return epoch, accuracy, error
class HMDBclassification(object):
def __init__(self, name, ground_truth_filename=None, prediction_filename=None,
subset='validation', verbose=False, top_k=1):
if not ground_truth_filename:
raise IOError('Please input a valid ground truth file.')
if not prediction_filename:
raise IOError('Please input a valid prediction file.')
self.subset = subset
self.verbose = verbose
self.top_k = top_k
self.ap = None
self.hit_at_k = None
# Import ground truth and predictions.
self.ground_truth, self.activity_index = self._import_ground_truth(
ground_truth_filename)
self.prediction = self._import_prediction(prediction_filename)
if name:
with open(name, 'w') as f:
f.write('{}\n'.format(name))
print("Write evaluation results to file:", name)
f.write('[INIT] Loaded annotations from {} subset.\n'.format(subset))
nr_gt = len(self.ground_truth)
f.write('\tNumber of ground truth instances: {}\n'.format(nr_gt))
nr_pred = len(self.prediction)
f.write('\tNumber of predictions: {}\n'.format(nr_pred))
def _import_ground_truth(self, ground_truth_filename):
"""Reads ground truth file, checks if it is well formatted, and returns
the ground truth instances and the activity classes.
Parameters
----------
ground_truth_filename : str
Full path to the ground truth json file.
Outputs
-------
ground_truth : df
Data frame containing the ground truth instances.
activity_index : dict
Dictionary containing class index.
"""
with open(ground_truth_filename, 'r') as fobj:
data = json.load(fobj)
# Checking format
# if not all([field in data.keys() for field in self.gt_fields]):
# raise IOError('Please input a valid ground truth file.')
# Initialize data frame
activity_index, cidx = {}, 0
video_lst, label_lst = [], []
for videoid, v in data['database'].items():
if self.subset != v['subset']:
continue
this_label = v['annotations']['label']
if this_label not in activity_index:
activity_index[this_label] = cidx
cidx += 1
video_lst.append(videoid)
label_lst.append(activity_index[this_label])
ground_truth = pd.DataFrame({'video-id': video_lst,
'label': label_lst})
ground_truth = ground_truth.drop_duplicates().reset_index(drop=True)
return ground_truth, activity_index
def _import_prediction(self, prediction_filename):
"""Reads prediction file, checks if it is well formatted, and returns
the prediction instances.
Parameters
----------
prediction_filename : str
Full path to the prediction json file.
Outputs
-------
prediction : df
Data frame containing the prediction instances.
"""
with open(prediction_filename, 'r') as fobj:
data = json.load(fobj)
# Checking format...
# if not all([field in data.keys() for field in self.pred_fields]):
# raise IOError('Please input a valid prediction file.')
# Initialize data frame
video_lst, label_lst, score_lst = [], [], []
for videoid, v in data['results'].items():
for result in v:
label = self.activity_index[result['label']]
video_lst.append(videoid)
label_lst.append(label)
score_lst.append(result['score'])
prediction = pd.DataFrame({'video-id': video_lst,
'label': label_lst,
'score': score_lst})
return prediction
def evaluate(self, name):
"""Evaluates a prediction file. For the detection task we measure the
interpolated mean average precision to measure the performance of a
method.
"""
hit_at_k = compute_video_hit_at_k(self.ground_truth,
self.prediction, top_k=self.top_k)
if name:
with open(name, 'a') as f:
f.write('[RESULTS] Performance on ActivityNet untrimmed video '
'classification task.\n')
f.write('\tError@{}: {}\n'.format(self.top_k, 1.0 - hit_at_k))
#print '\tAvg Hit@{}: {}'.format(self.top_k, avg_hit_at_k)
self.hit_at_k = hit_at_k
self.error = 1.0 - hit_at_k
################################################################################
# Metrics
################################################################################
def compute_video_hit_at_k(ground_truth, prediction, top_k=3):
"""Compute accuracy at k prediction between ground truth and
predictions data frames. This code is greatly inspired by evaluation
performed in Karpathy et al. CVPR14.
Parameters
----------
ground_truth : df
Data frame containing the ground truth instances.
Required fields: ['video-id', 'label']
prediction : df
Data frame containing the prediction instances.
Required fields: ['video-id, 'label', 'score']
Outputs
-------
acc : float
Top k accuracy score.
"""
video_ids = np.unique(ground_truth['video-id'].values)
avg_hits_per_vid = np.zeros(video_ids.size)
for i, vid in enumerate(video_ids):
pred_idx = prediction['video-id'] == vid
if not pred_idx.any():
continue
this_pred = prediction.loc[pred_idx].reset_index(drop=True)
# Get top K predictions sorted by decreasing score.
sort_idx = this_pred['score'].values.argsort()[::-1][:top_k]
this_pred = this_pred.loc[sort_idx].reset_index(drop=True)
# Get labels and compare against ground truth.
pred_label = this_pred['label'].tolist()
gt_idx = ground_truth['video-id'] == vid
gt_label = ground_truth.loc[gt_idx]['label'].tolist()
avg_hits_per_vid[i] = np.mean([1 if this_label in pred_label else 0
for this_label in gt_label])
return float(avg_hits_per_vid.mean())
if __name__ == '__main__':
epoch_output_path = sys.argv[1]
ground_truth_path = sys.argv[2]
prediction_path = sys.argv[3]
test_subset = sys.argv[4]
general_output_path = sys.argv[5]
epoch = sys.argv[6]
eval_hmdb51(epoch_output_path, ground_truth_path, prediction_path, test_subset=test_subset, top_k=1, general_output_path=general_output_path, epoch=epoch)