-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoencoders.py
126 lines (97 loc) · 4.32 KB
/
autoencoders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from keras.layers import Input, Dense
from keras.models import Model
from keras.datasets import mnist
import numpy as np
np.set_printoptions(linewidth=10000, precision = 3, edgeitems= 100, suppress=True)
import matplotlib.pyplot as plt
plt.ion()
#We create 3 models. An autoencoder and encoder and a decoder.
# this is the size of our encoded representations
encoding_dim = 32 # 32 floats -> compression of factor 24.5, assuming the input is 784 floats
# this is our input placeholder
input_img = Input(shape=(784,))
# "encoded" is the encoded representation of the input
# a layer instance (Dense) is callable on a tensor, and returns a tensor
encoded = Dense(encoding_dim, activation='relu')(input_img)
# "decoded" is the lossy reconstruction of the input
decoded = Dense(784, activation='sigmoid')(encoded)
# this model maps an input to its reconstruction
autoencoder = Model(input_img, decoded)
#autoencoder.summary()
#_________________________________________________________________
#Layer (type) Output Shape Param #
#=================================================================
#input_1 (InputLayer) (None, 784) 0
#_________________________________________________________________
#dense_1 (Dense) (None, 32) 25120
#_________________________________________________________________
#dense_2 (Dense) (None, 784) 25872
#=================================================================
#Total params: 50,992
#Trainable params: 50,992
#Non-trainable params: 0
#_________________________________________________________________
# this model maps an input to its encoded representation
encoder = Model(input_img, encoded)
#encoder.summary()
#_________________________________________________________________
#Layer (type) Output Shape Param #
#=================================================================
#input_1 (InputLayer) (None, 784) 0
#_________________________________________________________________
#dense_1 (Dense) (None, 32) 25120
#=================================================================
#Total params: 25,120
#Trainable params: 25,120
#Non-trainable params: 0
#_________________________________________________________________
# create a placeholder for an encoded (32-dimensional) input
encoded_input = Input(shape=(encoding_dim,))
# retrieve the last layer of the autoencoder model
decoder_layer = autoencoder.layers[-1]
# create the decoder model
decoder = Model(encoded_input, decoder_layer(encoded_input))
#decoder.summary()
#_________________________________________________________________
#Layer (type) Output Shape Param #
#=================================================================
#input_2 (InputLayer) (None, 32) 0
#_________________________________________________________________
#dense_2 (Dense) (None, 784) 25872
#=================================================================
#Total params: 25,872
#Trainable params: 25,872
#Non-trainable params: 0
#_________________________________________________________________
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
#We don't need the labels as the autoencoder is self-supervised
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
#note: x_train, x_train :)
autoencoder.fit(x_train, x_train,
epochs=50,
batch_size=256,
shuffle=True,
validation_data=(x_test, x_test))
#Testing the Autoencoder
encoded_imgs = encoder.predict(x_test)
decoded_imgs = decoder.predict(encoded_imgs)
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
# original
ax = plt.subplot(2, n, i + 1)
plt.imshow(x_test[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# reconstruction
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()