-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassignment6b.py
357 lines (297 loc) · 13.9 KB
/
assignment6b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import os
import numpy as np
np.set_printoptions(linewidth=10000, precision = 3, edgeitems= 100, suppress=True)
import matplotlib.pyplot as plt
plt.ion()
import random
import string
import tensorflow as tf
import zipfile
from six.moves import range
from six.moves.urllib.request import urlretrieve
"""
So this LSTM is trained over a body of text to predict the next letter in the text.
It is tested on a validation set by predicting each letter one at a time using the
previous (unrolled) history, and comparing with what's the actual next character.
with this we can calculate and error that is expressed as "perplexity".
Perplexity is a measurement of how well a probability distribution
or probability model predicts a sample. It may be used to compare probability models.
A low perplexity indicates the probability distribution is good at predicting the sample.
"""
def noop():
pass
url = 'http://mattmahoney.net/dc/'
def maybe_download(filename, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
if not os.path.exists(filename):
filename, _ = urlretrieve(url + filename, filename)
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified %s' % filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify ' + filename + '. Can you get to it with a browser?')
return filename
filename = maybe_download('text8.zip', 31344016)
def read_data(filename):
with zipfile.ZipFile(filename) as f:
name = f.namelist()[0]
data = tf.compat.as_str(f.read(name))
return data
text = read_data(filename)
print('Data size %d' % len(text))
valid_size = 1000
valid_text = text[:valid_size]
train_text = text[valid_size:]
train_size = len(train_text)
print(train_size, train_text[:64])
print(valid_size, valid_text[:64])
vocabulary_size = len(string.ascii_lowercase) + 1 # [a-z] + ' '
first_letter = ord(string.ascii_lowercase[0])
def char2id(char):
if char in string.ascii_lowercase:
return ord(char) - first_letter + 1
elif char == ' ':
return 0
else:
print('Unexpected character: %s' % char)
return 0
def id2char(dictid):
if dictid > 0:
return chr(dictid + first_letter - 1)
else:
return ' '
print(char2id('a'), char2id('z'), char2id(' '), char2id('i'))
print(id2char(1), id2char(26), id2char(0))
batch_size=64
num_unrollings=10
class BatchGenerator(object):
def __init__(self, text, batch_size, num_unrollings):
self._text = text
self._text_size = len(text)
self._batch_size = batch_size
self._num_unrollings = num_unrollings
segment = self._text_size // batch_size
self._cursor = [ offset * segment for offset in range(batch_size)]
self._last_batch = self._next_batch()
def _next_batch(self):
"""Generate a single batch from the current cursor position in the data."""
batch = np.zeros(shape=(self._batch_size, vocabulary_size), dtype=np.float)
for b in range(self._batch_size):
batch[b, char2id(self._text[self._cursor[b]])] = 1.0
self._cursor[b] = (self._cursor[b] + 1) % self._text_size
return batch
def next(self):
"""Generate the next array of batches from the data. The array consists of
the last batch of the previous array, followed by num_unrollings new ones.
"""
batches = [self._last_batch]
for step in range(self._num_unrollings):
batches.append(self._next_batch())
self._last_batch = batches[-1]
return batches
def characters(probabilities):
"""Turn a 1-hot encoding or a probability distribution over the possible
characters back into its (most likely) character representation."""
return [id2char(c) for c in np.argmax(probabilities, 1)]
def batches2string(batches):
"""Convert a sequence of batches back into their (most likely) string
representation."""
s = [''] * batches[0].shape[0]
for b in batches:
s = [''.join(x) for x in zip(s, characters(b))]
return s
train_batches = BatchGenerator(train_text, batch_size, num_unrollings)
valid_batches = BatchGenerator(valid_text, 1, 1)
print(batches2string(train_batches.next()))
print(batches2string(train_batches.next()))
print(batches2string(valid_batches.next()))
print(batches2string(valid_batches.next()))
def logprob(predictions, labels):
"""
Log-probability of the true labels in a predicted batch.
This is like an average (mean) cross entropy.
"""
predictions[predictions < 1e-10] = 1e-10
return np.sum(np.multiply(labels, -np.log(predictions))) / labels.shape[0]
def sample_distribution(distribution):
"""Sample one element from a distribution assumed to be an array of normalized
probabilities.
"""
r = random.uniform(0, 1)
s = 0
for i in range(len(distribution)):
s += distribution[i]
if s >= r:
return i
return len(distribution) - 1
def sample(prediction):
"""Turn a (column) prediction into 1-hot encoded samples."""
p = np.zeros(shape=[1, vocabulary_size], dtype=np.float)
p[0, sample_distribution(prediction[0])] = 1.0
return p
def random_distribution():
"""Generate a random column of probabilities."""
b = np.random.uniform(0.0, 1.0, size=[1, vocabulary_size])
return b/np.sum(b, 1)[:,None]
num_nodes = 128
#Define computation graph
graph = tf.Graph()
with graph.as_default():
#Notice:
#tf.Variables live in the graph.
#tf.placeholders will need data to be transfered from the CPU to the graph (running on GPU)
with tf.variable_scope("LSTM_parameters"):
# Input gate: input, previous output, and bias.
wix = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1), name='wix')
wih = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1), name='wih')
bi = tf.Variable(tf.zeros([1, num_nodes]), name='bi')
# Forget gate: input, previous output, and bias.
wfx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1), name='wfx')
wfh = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1), name='wfh')
bf = tf.Variable(tf.zeros([1, num_nodes]), name='bf')
# Memory cell: input, state and bias.
wcx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1), name='wcx')
wch = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1), name='wch')
bc = tf.Variable(tf.zeros([1, num_nodes]), name='bc')
# Output gate: input, previous output, and bias.
wox = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1), name='wox')
woh = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1), name='woh')
bo = tf.Variable(tf.zeros([1, num_nodes]), name='bo')
# Stacked parameters along second axis=1
sx = tf.concat([wix, wfx, wcx, wox], 1) #stacked inputs
sh = tf.concat([wih, wfh, wch, woh], 1) #stacked hidden states
sb = tf.concat([bi, bf, bc, bo], 1) #stacked biases
with tf.variable_scope("saved_parameters"):
# Variables saving state across unrollings.
saved_ht = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False, name='saved_ht')
saved_Ct = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False, name='saved_Ct')
with tf.variable_scope("output_parameters"):
# Classifier weights and biases.
w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size], -0.1, 0.1), name='w')
b = tf.Variable(tf.zeros([vocabulary_size]), name='b')
# Definition of the cell computation.
def lstm_cell(xt, ht_1, Ct_1, name):
"""Create a LSTM cell. See e.g.: http://arxiv.org/pdf/1402.1128v1.pdf
Note that in this formulation, we omit the various connections between the
previous state and the gates.
i is x(t)
o is h(t-1)
"""
with tf.variable_scope(name):
smatmul = xt @ sx + ht_1 @ sh + sb
it_mul, ft_mul, Ct_hat_mul, ot_mul = tf.split(smatmul, num_or_size_splits=4, axis=1)
it = tf.sigmoid(it_mul)
ft = tf.sigmoid(ft_mul)
Ct_hat = tf.tanh(Ct_hat_mul)
Ct = ft * Ct_1 + it * Ct_hat
ot = tf.sigmoid(ot_mul)
ht = ot * tf.tanh(Ct)
return ht, Ct
# Input data.
train_data = list()
for _ in range(num_unrollings + 1):
train_data.append(tf.placeholder(tf.float32, shape=[batch_size,vocabulary_size]))
train_inputs = train_data[:num_unrollings]
train_labels = train_data[1:] # labels are inputs shifted by one time step.
# Unrolled LSTM loop.
with tf.variable_scope("Unrolled_LSTM"):
hts = list()
ht = saved_ht
Ct = saved_Ct
for i, xt in enumerate(train_inputs):
ht, Ct = lstm_cell(xt, ht, Ct, name='lstm_cell%i'%i)
hts.append(ht)
# State saving across unrollings.
#control_dependencies makes sure that the variable on the argument are evaluated
#before the contents inside the context manager.
with tf.control_dependencies([saved_ht.assign(ht),
saved_Ct.assign(Ct)]):
# Classifier.
with tf.name_scope("logits"):
logits = tf.nn.xw_plus_b(tf.concat(hts, 0), w, b)
with tf.name_scope("loss"):
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(
labels=tf.concat(train_labels, 0), logits=logits))
# Optimizer.
global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay(10.0, global_step, 5000, 0.1, staircase=True)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
#We clip the gradients to avoid gradient exploding.
#These three lines do what optimizer.minimize(loss) does...
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 1.25)
optimizer = optimizer.apply_gradients(zip(gradients, v), global_step=global_step)
# Predictions.
with tf.name_scope("train_prediction"):
train_prediction = tf.nn.softmax(logits)
with tf.name_scope("sampled_test"):
# Sampling and validation eval: batch 1, no unrolling.
sample_input = tf.placeholder(tf.float32, shape=[1, vocabulary_size], name='sample_input')
saved_sample_output = tf.Variable(tf.zeros([1, num_nodes]), name='saved_sample_output')
saved_sample_state = tf.Variable(tf.zeros([1, num_nodes]), name='saved_sample_state')
#groups multiple graph nodes into one,
#So that we don't have to tell session.run() to evaluate each one of them.
#the nodes are grouped into an indicator (here reset_sample_state) and whenever we want to
#run that part of the graph, we only need to run this indicator.
reset_sample_state = tf.group(saved_sample_output.assign(tf.zeros([1, num_nodes])),
saved_sample_state.assign(tf.zeros([1, num_nodes])))
sample_output, sample_state = lstm_cell(sample_input, saved_sample_output, saved_sample_state,
name='lstm_cell_sampled_prediction')
with tf.control_dependencies([saved_sample_output.assign(sample_output),
saved_sample_state.assign(sample_state)]):
sample_prediction = tf.nn.softmax(tf.nn.xw_plus_b(sample_output, w, b))
num_steps = 7001
summary_frequency = 100
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print('Initialized')
writer = tf.summary.FileWriter(r"C:\tmp\tb\lstm", graph)
mean_loss = 0
for step in range(num_steps):
batches = train_batches.next()
feed_dict = dict()
for i in range(num_unrollings + 1):
feed_dict[train_data[i]] = batches[i]
_, l, predictions, lr = session.run(
[optimizer, loss, train_prediction, learning_rate],
feed_dict=feed_dict)
mean_loss += l
if step % summary_frequency == 0:
if step > 0:
mean_loss = mean_loss / summary_frequency
# The mean loss is an estimate of the loss over the last few batches.
print('Average loss at step %d: %f learning rate: %f' % (step, mean_loss, lr))
mean_loss = 0
labels = np.concatenate(list(batches)[1:])
print('Minibatch perplexity: %.2f' % float(np.exp(logprob(predictions, labels))))
if step % (summary_frequency * 10) == 0:
# Generate some samples.
print('=' * 80)
for _ in range(5):
feed = sample(random_distribution())
sentence = characters(feed)[0]
reset_sample_state.run()
for _ in range(79):
prediction = sample_prediction.eval({sample_input: feed})
feed = sample(prediction)
sentence += characters(feed)[0]
print(sentence)
print('=' * 80)
# Measure validation set perplexity.
reset_sample_state.run()
valid_logprob = 0
for _ in range(valid_size):
b = valid_batches.next()
predictions = sample_prediction.eval({sample_input: b[0]})
valid_logprob = valid_logprob + logprob(predictions, b[1])
#perplexity is a measurement of how well a probability distribution
#or probability model predicts a sample. It may be used to compare probability models.
#A low perplexity indicates the probability distribution is good at predicting the sample.
print('Validation set perplexity: %.2f' % float(np.exp(valid_logprob / valid_size)))
noop()