-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path[2].ES_calculation.R
590 lines (443 loc) · 24.5 KB
/
[2].ES_calculation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
# Martin R. Vasilev, 2016
#-----------------------------------------------#
# Script for calculating effect sizes from data #
#-----------------------------------------------#
rm(list=ls())
source("Functions/settings.R")
source("Functions/effect_sizes.R")
# Load data:
load("Data/data_raw.Rda");
load("r.Rda")
reference<- as.character(data$reference)
data$reference<- NULL
measures<- unique(as.character(data$measure))
#normal_codingQ<- measures[which(!is.element(measures, c("reading_speed", "perc_incorrect", "proofreading_speed",
# "prop_misses")))]
normal_codingQ<- measures[which(!is.element(measures, c("perc_incorrect", "prop_misses")))]
#NCD<- which(is.element(data$measure, normal_codingQ) & !is.na(data$var_C))
NCD<- which(!is.na(data$var_C))
regulars<- c("num_correct", "prop_correct", "perc_correct", "reading_score")
oposite<- c("reading_speed", "proofreading_speed", "prop_misses", "perc_incorrect")
# Calculate ES for studies with normal coding
data$d<- NA
data$d_var<- NA
data$g<- NA
data$g_var<- NA
for(i in 1:length(NCD)){
if(is.element(data$measure[NCD[i]], regulars)){
type<- "E-C"
} else{
type<- "C-E"
}
if(data$design[NCD[i]]=="between"){
if(data$var_type[NCD[i]]== "SD"){
data$d[NCD[i]]<- Cohens_d(M_C = data$mean_C[NCD[i]], M_E = data$mean_E[NCD[i]], S_C = data$var_C[NCD[i]],
S_E = data$var_E[NCD[i]], N_C = data$N_C[NCD[i]], N_E = data$N_E[NCD[i]],
design = as.character(data$design[NCD[i]]), type = type)
} else{
data$d[NCD[i]]<- Cohens_d(M_C = data$mean_C[NCD[i]], M_E = data$mean_E[NCD[i]],
S_C = data$var_C[NCD[i]]* sqrt(data$N_C[NCD[i]]),
S_E = data$var_E[NCD[i]]*sqrt(data$N_E[NCD[i]]),
N_C = data$N_C[NCD[i]], N_E = data$N_E[NCD[i]],
design = as.character(data$design[NCD[i]]), type = type)
}
data$d_var[NCD[i]]<- Cohens_d_var(d = data$d[NCD[i]], N_C = data$N_C[NCD[i]], N_E = data$N_E[NCD[i]],
design = as.character(data$design[NCD[i]]))
data$g[NCD[i]]<- Hedges_g(d = data$d[NCD[i]], N_C = data$N_C[NCD[i]], N_E = data$N_E[NCD[i]],
design = as.character(data$design[NCD[i]]))
data$g_var[NCD[i]]<- Hedges_g_var(d_var = data$d_var[NCD[i]], N_C = data$N_C[NCD[i]], N_E = data$N_E[NCD[i]],
design = as.character(data$design[NCD[i]]))
} else{
if(data$var_type[NCD[i]]== "SD"){
data$d[NCD[i]]<- Cohens_d(M_C = data$mean_C[NCD[i]], M_E = data$mean_E[NCD[i]], S_C = data$var_C[NCD[i]],
S_E = data$var_E[NCD[i]], N = data$N_C[NCD[i]], r = r,
design = as.character(data$design[NCD[i]]), type = type)
}else{
data$d[NCD[i]]<- Cohens_d(M_C = data$mean_C[NCD[i]], M_E = data$mean_E[NCD[i]],
S_C = data$var_C[NCD[i]]*sqrt(data$N_C[NCD[i]]),
S_E = data$var_E[NCD[i]]*sqrt(data$N_C[NCD[i]]),
N = data$N_C[NCD[i]], r = r,
design = as.character(data$design[NCD[i]]), type = type)
}
data$d_var[NCD[i]]<- Cohens_d_var(d = data$d[NCD[i]], N = data$N_C[NCD[i]], r = r,
design = as.character(data$design[NCD[i]]))
data$g[NCD[i]]<- Hedges_g(d = data$d[NCD[i]], N = data$N_C[NCD[i]],
design = as.character(data$design[NCD[i]]))
data$g_var[NCD[i]]<- Hedges_g_var(d_var = data$d_var[NCD[i]], N = data$N_C[NCD[i]],
design = as.character(data$design[NCD[i]]))
}
}
data$CI95_L<- data$g- 1.96*sqrt(data$g_var)
data$CI95_R<- data$g+ 1.96*sqrt(data$g_var)
data$reference<- reference
##################
# Special cases: #
##################
# Studies in which effect sizes had to approximated or extracted from test statistics.
# This refers to studies with incomplete reporting of descriptive statistics:
#---------------------------------
# Study 7 Etaugh & Michals (1975):
#---------------------------------
# data from text
# Simple effect F statistic not reported, so I extract the SD of the difference from the
# reported interaction effect. That's the closest approximation possible.
# gender x music interaction:
d_inter<- ANOVA_to_d(Fvalue= 5.46, n = 32, design = "within", r=r)
# mean difference of the interaction:
MD<- (8.6-6.6)- (6.6-6.9)
# pooled SD of the interaction ES
SDp<- MD/d_inter; #rm(d_inter, MD)
# Approximate effect size of music by using the interaction SD:
d<- ((6.9+6.6)/2- (6.6+8.6)/2)/SDp
d_var= ANOVA_to_d_var(d, n= 32, design= "within", r=r)
a<- which(data$cit== "Etaugh & Michals (1975)")
data$d[a]<- d
data$d_var[a]<- d_var
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
# 95% CI:
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
#-----------------------------------
# Study 17: Henderson et al. (1945):
#-----------------------------------
a<- which(data$cit== "Henderson et al. (1945)")
# The closest (and only possible) approximation is to obtain the variance from using
# the pooled SD from the pre-test and post-test (within-subject). This is then used for
# calculating the (between-subject) effect of background condition on the post-test scores
# (which is what is of interest in this paper).
#----
# silence (baseline):
#----
d<- Ttest_to_d(t = 0.923, n = data$N_C[a[1]], design = "within", r = r)
# within-subject because same t-statistic is from a pretest-posttest (repeated-measures)
MD<- 3.9 # Table 1
SD_silence<- abs(MD/d)
#----
# classical music (a[1]):
#----
# get pooled SD from t-statistic:
d<- Ttest_to_d(t = 0.266, n = data$N_E[a[1]], design = "within", r=r)
MD<- -1.2 # Table 1
SD_class<- abs(MD/d)
#----
# pop music (a[2]):
#----
d<- Ttest_to_d(t = 6.160, n = data$N_E[a[2]], design = "within", r=r)
MD<- -25.1
SD_pop<- abs(MD/d)
# calculate ES for meta-analysis:
# classical:
data$d[a[1]]<- Cohens_d(M_C = data$mean_C[a[1]], M_E = data$mean_E[a[1]], S_C = SD_silence,
S_E = SD_class, N_C = data$N_C[a[1]], N_E = data$N_E[a[1]],
design = data$design[a[1]], type = "E-C")
data$d_var[a[1]]<- Cohens_d_var(d = data$d[a[1]], N_C = data$N_C[a[1]], N_E = data$N_E[a[1]],
design = data$design[a[1]])
data$g[a[1]]<- Hedges_g(d = data$d[a[1]], N_C = data$N_C[a[1]], N_E = data$N_E[a[1]],
design = data$design[a[1]])
data$g_var[a[1]]<- Hedges_g_var(d_var = data$d_var[a[1]], N_C = data$N_C[a[1]], N_E = data$N_E[a[1]],
design = data$design[a[1]])
data$CI95_L[a[1]]<- data$g[a[1]]- 1.96*sqrt(data$g_var[a[1]])
data$CI95_R[a[1]]<- data$g[a[1]]+ 1.96*sqrt(data$g_var[a[1]])
# pop:
data$d[a[2]]<- Cohens_d(M_C = data$mean_C[a[2]], M_E = data$mean_E[a[2]], S_C = SD_silence,
S_E = SD_pop, N_C = data$N_C[a[2]], N_E = data$N_E[a[2]],
design = data$design[a[2]], type = "E-C")
data$d_var[a[2]]<- Cohens_d_var(d = data$d[a[2]], N_C = data$N_C[a[2]], N_E = data$N_E[a[2]],
design = data$design[a[2]])
data$g[a[2]]<- Hedges_g(d = data$d[a[2]], N_C = data$N_C[a[2]], N_E = data$N_E[a[2]],
design = data$design[a[2]])
data$g_var[a[2]]<- Hedges_g_var(d_var = data$d_var[a[2]], N_C = data$N_C[a[2]], N_E = data$N_E[a[2]],
design = data$design[a[2]])
data$CI95_L[a[2]]<- data$g[a[2]]- 1.96*sqrt(data$g_var[a[2]])
data$CI95_R[a[2]]<- data$g[a[2]]+ 1.96*sqrt(data$g_var[a[2]])
#---------------------------
# Study 32 Weinstein (1977):
#---------------------------
a<- which(data$cit=="Weinstein (1977)")
# Contextual errors: effect size computed from the reported (repeated-measures) ANOVA:
data$d[a[2]]<- -ANOVA_to_d(Fvalue = 10.0, n = data$N_C[a[2]], design = data$design[a[2]], r= r)
# negative effect size because study requires opposite coding (>undetected = worse performance)
data$d_var[a[2]]<- Cohens_d_var(d = data$d[a[2]], N = data$N_C[a[2]],
design = data$design[a[2]], r = r)
data$g[a[2]]<- Hedges_g(d = data$d[a[2]], N = data$N_C[a[2]], design = data$design[a[2]])
data$g_var[a[2]]<- Hedges_g_var(d_var = data$d_var[a[2]], N = data$N_C[a[2]],
design = data$design[a[2]])
data$CI95_L[a[2]]<- data$g[a[2]]- 1.96*sqrt(data$g_var[a[2]])
data$CI95_R[a[2]]<- data$g[a[2]]+ 1.96*sqrt(data$g_var[a[2]])
# Non-contextual errors:
# Here, the exact F value is not reported (<1). I use the mean difference and the pooled SD
# from the previous effect size to approximate d.
# This is the closest approximation that can be done with the available information
# effect size is negative, requires opposite coding
SDp<- abs((data$mean_E[a[2]]- data$mean_C[a[2]])/data$d[a[2]])
data$d[a[1]]<- (data$mean_C[a[1]]- data$mean_E[a[1]])/SDp
data$d_var[a[1]]<- Cohens_d_var(d = data$d[a[1]], N = data$N_C[a[1]], design = data$design[a[1]], r=r)
data$g[a[1]]<- Hedges_g(d = data$d[a[1]], N = data$N_C[a[1]], design = data$design[a[1]])
data$g_var[a[1]]<- Hedges_g_var(d_var = data$d_var[a[1]], N = data$N_C[a[1]],
design = data$design[a[1]])
data$CI95_L[a[1]]<- data$g[a[1]]- 1.96*sqrt(data$g_var[a[1]])
data$CI95_R[a[1]]<- data$g[a[1]]+ 1.96*sqrt(data$g_var[a[1]])
#--------------------------------------
# Study 33 Martin et al. (1988), Exp.1:
#--------------------------------------
# Only what is continuous and random speech effect sizes can be recovered.
# Only qualitative description of the remaining studies is given (i.e. all ps>.10)
# continuous speech:
a<- which(data$cit=="Martin et al. (1988), Exp.1" & data$sound_type== "native")
data$d[a]<- Ttest_to_d(t = -2.38, n = data$N_C[a], design = data$design[a], r = r)
# negative sign, see means
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], n = data$N_C[a], design = data$design[a], r=r)
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a] - 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a] + 1.96*sqrt(data$g_var[a])
# random speech:
a<- which(data$cit=="Martin et al. (1988), Exp.1" & data$sound_type== "random (native)")
data$d[a]<- Ttest_to_d(t = -2.10, n = data$N_C[a], design = data$design[a], r = r)
# negative sign, see means
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], n = data$N_C[a], design = data$design[a], r = r)
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
# instrumental music:
# no test statistics are reported. To approximate the ES, I take the average of the pooled SD for the
# 2 available ESs.
ID1<- which(data$cit=="Martin et al. (1988), Exp.1" & data$sound_type== "native")
ID2<- which(data$cit=="Martin et al. (1988), Exp.1" & data$sound_type== "random (native)")
SDp1<- (data$mean_E[ID1]- data$mean_C[ID1])/data$d[ID1]
SDp2<- (data$mean_E[ID2]- data$mean_C[ID2])/data$d[ID2]
SDp<- mean(c(SDp1, SDp2)) # (average) pooled SD to br used in the remaining ESs in experiment 1
a<- which(data$cit=="Martin et al. (1988), Exp.1" & data$sound_type== "instrumental")
data$d[a]<- (data$mean_E[a]- data$mean_C[a])/ SDp
data$d_var[a]<- Cohens_d_var(d = data$d[a], N = data$N_C[a], r = r, design = data$design[a])
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
# random tones:
a<- which(data$cit=="Martin et al. (1988), Exp.1" & data$sound_type== "random tones")
data$d[a]<- (data$mean_E[a]- data$mean_C[a])/ SDp
data$d_var[a]<- Cohens_d_var(d = data$d[a], N = data$N_C[a], r = r, design = data$design[a])
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
# white noise:
a<- which(data$cit=="Martin et al. (1988), Exp.1" & data$sound_type== "white")
data$d[a]<- (data$mean_E[a]- data$mean_C[a])/ SDp
data$d_var[a]<- Cohens_d_var(d = data$d[a], N = data$N_C[a], r = r, design = data$design[a])
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
#--------------------------------------
# Study 34 Martin et al. (1988), Exp.2:
#--------------------------------------
a<- which(data$cit=="Martin et al. (1988), Exp.2" & data$sound_type== "instrumental")
data$d[a]<- Ttest_to_d(t = 0.263, n = data$N_C[a], design = data$design[a], r = r)
# ES positive, see means
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], n = data$N_C[a], design = data$design[a], r = r)
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
# lyrical music:
# I used the SDp of the available ES:
ID<- which(data$cit=="Martin et al. (1988), Exp.2" & data$sound_type== "instrumental")
SDp<- (data$mean_E[ID]- data$mean_C[ID])/data$d[ID]
a<- which(data$cit=="Martin et al. (1988), Exp.2" & data$sound_type== "lyrical")
data$d[a]<- (data$mean_E[a]- data$mean_C[a])/ SDp
data$d_var[a]<- Cohens_d_var(d = data$d[a], N = data$N_C[a], r = r, design = data$design[a])
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
#--------------------------------------
# Study 35 Martin et al. (1988), Exp.4:
#--------------------------------------
# white noise:
a<- which(data$cit=="Martin et al. (1988), Exp.4" & data$sound_type== "white")
data$d[a]<- Ttest_to_d(t = -1.44, n = data$N_C[a], design = data$design[a], r = r)
# negative sign, see means
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], n = data$N_C[a], design = data$design[a], r = r)
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
# English speech:
a<- which(data$cit=="Martin et al. (1988), Exp.4" & data$sound_type== "native")
data$d[a]<- Ttest_to_d(t = -4.26, n = data$N_C[a], design = data$design[a], r = r)
# negative sign, see means
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], n = data$N_C[a], design = data$design[a], r=r)
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
# Russian speech:
a<- which(data$cit=="Martin et al. (1988), Exp.4" & data$sound_type== "foreign")
data$d[a]<- Ttest_to_d(t = -2.06, n = data$N_C[a], design = data$design[a], r = r)
# negative sign, see means
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], n = data$N_C[a], design = data$design[a], r = r)
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
#--------------------------------------
# Study 36 Martin et al. (1988), Exp.5:
#--------------------------------------
# white noise:
a<- which(data$cit=="Martin et al. (1988), Exp.5" & data$sound_type== "white")
data$d[a]<- Ttest_to_d(t = -2.91, n = data$N_C[a], design = data$design[a], r = r)
# negative sign, see means
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], n = data$N_C[a], design = data$design[a], r = r)
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
# non-word speech:
a<- which(data$cit=="Martin et al. (1988), Exp.5" & data$sound_type== "non-word")
data$d[a]<- Ttest_to_d(t = -2.75, n = data$N_C[a], design = data$design[a], r = r)
# negative sign, see means
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], n = data$N_C[a], design = data$design[a], r = r)
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a] - 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a] + 1.96*sqrt(data$g_var[a])
# random words speech:
a<- which(data$cit=="Martin et al. (1988), Exp.5" & data$sound_type== "random words")
data$d[a]<- Ttest_to_d(t = -4.59, n = data$N_C[a], design = data$design[a], r = r)
# negative sign, see means
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], n = data$N_C[a], design = data$design[a], r = r)
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
#-------------------------------
# Study 37 Gawron (1984), Exp.1:
#-------------------------------
# Here we need the interaction between Time and schedule. The reason is that noise exposure happened
# only in the second hour, thus a general noise effect can be shown if performance differed between the 2
# schedules only in the second hour (noise vs silence) but not in the first hour (silence vs silence)
# white noise:
#es$d[81]<- ANOVA_to_d(Fvalue=0.29, n= data$N_C[81], design= data$design[81], r=r)
#es$var_d[81]<- ANOVA_to_d_var(d= es$d[81], n= data$N_C[81], design= data$design[81], r=r)
#--------------------------
# Study 38 Mitchell (1949):
#--------------------------
# Critical ratio= t value
a<- which(data$cit== "Mitchell (1949)")
data$d[a]<- Ttest_to_d(t = -0.11/1.02, n = data$N_C[a], design = data$design[a], r = r)
# negative sign, see means
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], n = data$N_C[a], design = data$design[a], r = r)
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
#----------------------------------
# Study 39 Armstrong et al. (1991):
#----------------------------------
# TV Ads
a<- which(data$cit== "Armstrong et al. (1991)" & data$sound_type=="TV ads")
# negative sign, see means
data$d[a]<- Ttest_to_d(t = -2.53, N_C = data$N_C[a], N_E = data$N_E[a], design = data$design[a])
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], N_C = data$N_C[a], N_E = data$N_E[a],
design = data$design[a] )
data$g[a]<- Hedges_g(d = data$d[a], N_C = data$N_C[a], N_E = data$N_E[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N_C = data$N_C[a], N_E = data$N_E[a],
design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
# TV drama
a<- which(data$cit== "Armstrong et al. (1991)" & data$sound_type=="TV drama")
# negative sign, see means
data$d[a]<- Ttest_to_d(t = -1.97, N_C = data$N_C[a], N_E = data$N_E[a], design = data$design[a])
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], N_C = data$N_C[a], N_E = data$N_E[a],
design = data$design[a])
data$g[a]<- Hedges_g(d = data$d[a], N_C = data$N_C[a], N_E = data$N_E[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N_C = data$N_C[a], N_E = data$N_E[a],
design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
#------------------------------
# Study 53 Halin et al. (2014):
#------------------------------
a<- which(data$cit== "Halin et al. (2014)")
# negative sign because speech mean was smaller than silence mean
data$d[a]<- -ANOVA_to_d(Fvalue = 1.39, n = data$N_C[a], design = data$design[a], r = r)
data$d_var[a]<- ANOVA_to_d_var(d = data$d[a], n = data$N_C[a], design = data$design[a], r = r)
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
#---------------------------------
# Study 8 Etaugh & Ptasnik (1982):
#---------------------------------
# Here we need the main effect of study condition (i.e. music vs silence)
# negative sign, see means
a<- which(data$cit=="Etaugh & Ptasnik (1982)")
data$d[a]<- -ANOVA_to_d(Fvalue = 5.72, N_C = data$N_C[a], N_E = data$N_E[a], design = data$design[a])
data$d_var[a]<- ANOVA_to_d_var(d = data$d[a], N_C = data$N_C[a], N_E = data$N_E[a],
design = data$design[a])
data$g[a]<- Hedges_g(d = data$d[a], N_C = data$N_C[a], N_E = data$N_E[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N_C = data$N_C[a], N_E = data$N_E[a],
design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
#---------------------------------
# Study 63 Sukowski et al. (2016):
#---------------------------------
# ES is converted from t-test statistic (repeated-measures)
# sign is negative, check means in the paper:
a<- which(data$cit=="Sukowski et al. (2016)")
data$d[a]<- Ttest_to_d(t = -4.509, n = data$N_C[a], design = data$design[a], r = r)
data$d_var[a]<- Ttest_to_d_var(d = data$d[a], n = data$N_C[a], design = data$design[a], r = r)
data$g[a]<- Hedges_g(d = data$d[a], N = data$N_C[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N = data$N_C[a], design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
#-------------------------
# Study 65 Gillis (2016):
#-------------------------
# ES is positive, see means
# converted from reported anova:
a<- which(data$cit=="Gillis (2016)")
data$d[a]<- ANOVA_to_d(Fvalue = 0.07, N_C = data$N_C[a], N_E = data$N_E[a], design = data$design[a])
data$d_var[a]<- ANOVA_to_d_var(d = data$d[a], N_C = data$N_C[a], N_E = data$N_E[a], design = data$design[a])
data$g[a]<- Hedges_g(d = data$d[a], N_C = data$N_C[a], N_E = data$N_E[a], design = data$design[a])
data$g_var[a]<- Hedges_g_var(d_var = data$d_var[a], N_C = data$N_C[a], N_E = data$N_E[a],
design = data$design[a])
data$CI95_L[a]<- data$g[a]- 1.96*sqrt(data$g_var[a])
data$CI95_R[a]<- data$g[a]+ 1.96*sqrt(data$g_var[a])
## remove 2 effect sizes that are not reading speed:
a<- which(data$cit=="Pool et al. (2000), Exp.1" & data$measure=="reading_speed")
data<- data[-a,]
a<- which(data$cit=="Pool et al. (2000), Exp.2" & data$measure=="reading_speed")
data<- data[-a,]
# remove proofreading speed:
data<- subset(data, measure!="proofreading_speed")
if(MdS){
for (i in 1:nrow(data)){
if(data$design[i]=="within"){
data$g[i]<- d_IG(d_RM =data$g[i], r = r)
}
}
}
if(MdS_var){
for (i in 1:nrow(data)){
if(data$design[i]=="within"){
data$g_var[i]<- var_RM(n = data$N_C[i], d_RM = data$g[i])
}
}
}
# remove outlier ES:
data_old<- data
data<- subset(data, g<3.4)
save(data_old, file= "Data/data_old.Rda")
# Save data:
save(data, file= "Data/data.Rda")
write.csv(data, file= "Data/data.csv")
#source("https://bioconductor.org/biocLite.R")
#biocLite("EBImage")
#library(metagear)