-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRestNullModel.R
150 lines (115 loc) · 6.34 KB
/
RestNullModel.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#### Ecological Synthesis Lab (SintECO)
#### Authors: Gabriel M. Felix, Rafael B. P. Pinheiro, and Marco A. R. Mello.
#### See README for further info.
#### Vaznull algorithm of bipartite modified to run the restricted null model
RestNullModel <- function(M, Pij.Prob, Numbernulls, Print.null = F, allow.degeneration = F,
return.nonrm.species = T, connectance = T, byarea = F, R.partitions = NULL, C.partitions = NULL){
### Test of assumptions
if (!is.matrix(M)){stop("M is not a matrix")}
if (0 %in% rowSums(M) | 0 %in% colSums(M)) {stop("M is degenerated")}
if (!is.matrix(Pij.Prob)){stop("Pij is not a matrix")}
if (T %in% c(Pij.Prob < 0)){stop("Pij must contain only numbers >= 0")}
if (nrow(M) != nrow(Pij.Prob) | ncol(M) != ncol(Pij.Prob)){stop("Dimensions of M and Pij.Prob should be identical")}
if (byarea == T){
if(is.null(C.partitions) | is.null(R.partitions)){stop("Partitions missing")}
if (length(unique(c(length(R.partitions),nrow(M),nrow(Pij.Prob)))) != 1){stop("The number of elements of R.partition should be the same as the number of rows of M and Pij.prob")}
if (length(unique(c(length(C.partitions),ncol(M),ncol(Pij.Prob)))) != 1){stop("The number of elements of C.partition should be the same as the number of column of M and Pij.prob")}
if(!identical(sort(unique(R.partitions)), sort(unique(C.partitions)))){stop("The number and labels of modules in R.partition and C.partition must be the same")}
}
if (Numbernulls <= 0 | !is.numeric(Numbernulls)) {stop("Numbernulls should be a number > 0")}
if (!is.logical(connectance)){stop("connectance should be logical (T or F)")}
if (!is.logical(allow.degeneration)){stop("allow.degeneration should be logical (T or F)")}
if (!is.logical(return.nonrm.species)){stop("return.nonrm.species should be logical (T or F)")}
if (!is.logical(byarea)){stop("byarea should be logical (T or F)")}
### M dimensions
r <- dim(M)[1] # Number of rows
c <- dim(M)[2] # Number of collums
### Constructing a array with r rows, c columns and 2 slices. This array represents the matrix area structure
if (byarea == T){
Matrix.area <- array(0, dim = c(r, c, 2))
for (rr in 1:r){
for (cc in 1:c){
Matrix.area[rr,cc,1] <- R.partitions[rr]
Matrix.area[rr,cc,2] <- C.partitions[cc]
}
}
}else if (byarea == F){
## Assigning all rows and columns to the same partition in order to run the code bellow
Matrix.area <- array(1, dim = c(r, c, 2))
R.partitions <- rep(1, nrow(M))
C.partitions <- rep(1, ncol(M))
}
### Null model simulation
NullMatrices <- list() # list where the null matrices will be storage
length(NullMatrices) <- Numbernulls #assigning the number of null matrices to be saved in NullMatrices
## Drawing interaction in each null matrix
for (nn in 1:Numbernulls){
R.part <- sort(unique(as.vector(Matrix.area[,,1])))
C.part <- sort(unique(as.vector(Matrix.area[,,2])))
finalmat <- matrix(NA, r, c)
for (R.p in R.part){
for (C.p in C.part){
M.a <- as.matrix(M[R.partitions == R.p, C.partitions == C.p])
Pij.a <- Pij.Prob[R.partitions == R.p, C.partitions == C.p]
r.a <- dim(M.a)[1]
c.a <- dim(M.a)[2]
P.a <- P1.a <- Pij.a
finalmat.a <- matrix(0, r.a, c.a)
if(allow.degeneration == F & R.p == C.p){
## Ensuring that the dimensions of the null matrix will be the same of the original matrix
D.int.finalmat.a <- 0 # The number of rows + columns occupied of the null matrix
while (D.int.finalmat.a < sum(dim(M.a))) { # While the dimensions of the null matrix was smaller then the original matrix, keep going
sel <- sample(1:length(M.a), 1, prob = P.a) # Sample an cell of M.a with probability P.a
selc <- floor((sel - 1)/(dim(M.a)[1])) + 1 # Recovering column and
selr <- ((sel - 1)%%dim(M.a)[1]) + 1 # row of the cell sampled
if (sum(finalmat.a[, selc]) == 0 | sum(finalmat.a[selr,]) == 0) { # Checking if row or column of the sampled cell is empty
finalmat.a[sel] <- 1
P.a[sel] <- 0
}
D.int.finalmat.a <- sum(rowSums(finalmat.a) > 0) + sum(colSums(finalmat.a) > 0) # Setting the new number of dimensions occupied
}
# When the number of occupied dimensions of the null matrix was the same as the original matrix, continue
}
conn.remain <- sum(M.a > 0) - sum(finalmat.a > 0) # The number of cells remaining to be occupied to mantain the original connectance
if (conn.remain > 0) {
if(connectance == T){
if (length(which(finalmat.a == 0)) == 1) {
add <- which(finalmat.a == 0)
} else {
add <- sample(which(finalmat.a == 0), conn.remain,
prob = P1.a[finalmat.a == 0], replace = F)
}
}else {
add <- sample(1:length(finalmat.a), conn.remain,
prob = P1.a, replace = T)
}
for (add1 in add){
finalmat.a[add1] <- finalmat.a[add1] + 1
}
}
### Checking if there are still interactions to be drawn. If applicable, draw.
int.remain <- (sum(M.a) - sum(finalmat.a))
if (int.remain > 0) {
if (length(which(finalmat.a > 0)) == 1) {
add <- rep(which(finalmat.a > 0),int.remain)
}else{
add <- sample(which(finalmat.a > 0), int.remain, prob = P1.a[which(finalmat.a >0)], replace = T)
}
finalmat.a[as.numeric(names(table(add)))] <- finalmat.a[as.numeric(names(table(add)))] + (table(add))
}
finalmat[R.partitions == R.p, C.partitions == C.p] <- finalmat.a
}
}
# Saving outputs
R2keep <- which(rowSums(finalmat) != 0)
C2keep <- which(colSums(finalmat) != 0)
finalmat2 <- finalmat[R2keep,C2keep]
if (return.nonrm.species == T){
NullMatrices[[nn]] = list(NullMatrix = finalmat2, R.Kept = R2keep, C.Kept = C2keep)
}else if(return.nonrm.species == F){
NullMatrices[[nn]] = finalmat2
}
if (Print.null == T){print(nn)}
}
return(NullMatrices = NullMatrices)
}