-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPosteriorProb.R
101 lines (82 loc) · 4.22 KB
/
PosteriorProb.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#### Ecological Synthesis Lab (SintECO)
#### Authors: Gabriel M. Felix, Rafael B. P. Pinheiro, and Marco A. R. Mello.
#### See README for further info.
#### Compute probabilities of interaction in a network with a modular structure.
PosteriorProb <- function(M, R.partitions, C.partitions, Prior.Pij, Conditional.level){
# Test of assumptions
if (!is.matrix(M)){stop("M is not a matrix")}
if (0 %in% rowSums(M) | 0 %in% colSums(M)) {stop("M is degenerated. There are rows and/or columns without interactions in the matrix. Remove them before proceding")}
if (!is.numeric(R.partitions) | !is.numeric(C.partitions)) {stop("Partitions are not numeric")}
if (length(R.partitions) != nrow(M) | length(C.partitions) != ncol(M)) {stop("Partitions and matrix dimensions have different sizes")}
if (!(Conditional.level %in% c("matrix","modules","areas"))) {stop("Conditional.level should be 'matrix','modules' or 'areas'")}
if (Prior.Pij != "degreeprob" & Prior.Pij != "equiprobable" & Prior.Pij != "degreeprob.byarea") {stop("Pij.probs should be 'equiprobable' or 'degreeprob' or 'degreeprob.byarea")}
# M dimensions
r <- dim(M)[1] # Number of rows
c <- dim(M)[2] # Number of columns
array()
# Making an array with r rows, c columns, and 3 slices. This array represents the modular structure.
# The first slice informs if a given cell M(rc) is within (1) or outside (0) a module.
# The second slice informs to which module the species in the row (r) of a given cell M(rc) belongs.
# The third slice informs to which module the species in the column (c) of a given cell M(rc) belongs .
Matrix.mod <- array(0, dim = c(r, c, 3))
for (rr in 1:r){
for (cc in 1:c){
Matrix.mod[rr,cc,1] <- ifelse(R.partitions[rr] == C.partitions[cc], 1,0)
Matrix.mod[rr,cc,2] <- R.partitions[rr]
Matrix.mod[rr,cc,3] <- C.partitions[cc]
}
}
# Defining a priori Pij probabilities.
if (Prior.Pij == "equiprobable"){
Pi <- rep(1 / r, times = r)
Pj <- rep(1 / c, times = c)
Prior.Pij.species <- tcrossprod(Pi, Pj)
}else if (Prior.Pij == "degreeprob"){
Pi <- rowSums(M) / sum(rowSums(M))
Pj <- colSums(M) / sum(colSums(M))
Prior.Pij.species <- tcrossprod(Pi, Pj)
}else if(Prior.Pij == "degreeprob.byarea"){
Prior.Pij.species <- M
RMod <- sort(unique(R.partitions))
CMod <- sort(unique(C.partitions))
for (rr in RMod){
for (cc in CMod){
M.rr.cc <- matrix(M[R.partitions == rr,C.partitions == cc], sum(1*(R.partitions == rr)), sum(1*(C.partitions == cc)))
Pi.rr.cc <- rowSums(M.rr.cc) / sum(rowSums(M.rr.cc))
Pj.rr.cc <- colSums(M.rr.cc) / sum(colSums(M.rr.cc))
Prior.Pij.species[R.partitions == rr, C.partitions == cc] <- tcrossprod(Pi.rr.cc, Pj.rr.cc)
}
}
}
# Defining conditional probabilities by area based on species degrees and connectance by area.
if (Conditional.level == "matrix"){
Post.Pij <- Prior.Pij.species
}else {
Prior.Pij.area <- matrix(NA,r,c)
Cond.Pij.area <- matrix(NA,r,c)
if (Conditional.level == "modules"){
WMod.prior <- sum(Prior.Pij.species[Matrix.mod[,,1] == 1])
OMod.prior <- sum(Prior.Pij.species[Matrix.mod[,,1] == 0])
Prior.Pij.area[Matrix.mod[,,1] == 1] <- WMod.prior
Prior.Pij.area[Matrix.mod[,,1] == 0] <- OMod.prior
WMod.cond <- sum(M[Matrix.mod[,,1] == 1]) / sum(M)
OMod.cond <- sum(M[Matrix.mod[,,1] == 0]) / sum(M)
Cond.Pij.area[Matrix.mod[,,1] == 1] <- WMod.cond
Cond.Pij.area[Matrix.mod[,,1] == 0] <- OMod.cond
}else if (Conditional.level == "areas"){
RMod <- sort(unique(R.partitions))
CMod <- sort(unique(C.partitions))
for (rr in RMod){
for (cc in CMod){
WArea.prior <- sum(Prior.Pij.species[Matrix.mod[,,2] == rr & Matrix.mod[,,3] == cc])
Prior.Pij.area[Matrix.mod[,,2] == rr & Matrix.mod[,,3] == cc] <- WArea.prior
WArea.cond <- sum(M[Matrix.mod[,,2] == rr & Matrix.mod[,,3] == cc]) / sum(M)
Cond.Pij.area[Matrix.mod[,,2] == rr & Matrix.mod[,,3] == cc] <- WArea.cond
}
}
}
# Adjusting the prior Pij prob by conditional probabilities.
Post.Pij <- Prior.Pij.species * (Cond.Pij.area / Prior.Pij.area)
}
return(Post.Pij = Post.Pij)
}