Skip to content

Latest commit

 

History

History
58 lines (37 loc) · 1.43 KB

README.md

File metadata and controls

58 lines (37 loc) · 1.43 KB

Marian Tensorboard

TensorBoard integration for Marian NMT. marian-tensorboard generates charts for TensorBoard or Azure ML Metrics from Marian's training logs.

It started as a project at MTMA 2022 and conceptually at MTM 2019.

Installation

Using PyPI:

pip install marian-tensorboard

Locally:

git clone https://github.com/marian-nmt/marian-tensorboard
cd marian-tensorboard
virtualenv -p python3 venv
source ./venv/bin/activate
python3 setup.py install

Both will add new marian-tensorboard command.

Usage

Local machine

marian-tensorboard -f examples/train.encs.*.log

Open a web browser at https://localhost:6006. The script will update the TensorBoard charts every --update-freq seconds unless --offline is used.

Azure ML

marian-tensorboard -f path/to/train.log [-t tb azureml]

Then on Azure Machine Learning VM go to the Metrics tab or start a TensorBoard server under the Endpoints tab.

Note that logging into Azure ML Metrics is automatically enabled if Azure ML Run ID is detected. Specify -t azureml to disable TensorBoard logging. If Azure ML is enabled, the script will not start an own TensorBoard server instance.

Contributors

  • Amr Hendy
  • Kevin Duh
  • Roman Grundkiewicz
  • Marcin Junczys-Dowmunt

See CHANGELOG.md.

License

See LICENSE.md.