Skip to content

Latest commit

 

History

History
78 lines (47 loc) · 7.57 KB

README.md

File metadata and controls

78 lines (47 loc) · 7.57 KB

Journal club

Project Status: Active – The project has reached a stable, usable state and is being actively developed.

An overview of important and/or interesting journal articles (ordered by year then alphabetically by first author's surname). Journal abbreviations follow ISO 4

See also the reference collection to push back against common statistical myths, Wiki Journal Club, Society for Epidemiologic Research journal club, Society for Healthcare Epidemiology of America journal club, Reading lists from Columbia University, Tibshirani's hot ideas journal club, ReproducibiliTea, International Society for Pharmacoepidemiology journal club, and Global Diabetes Journal Club as well as Twitter hashtags #twitjc (general), #phtwitjc (public health), and #idjclub (infectious disease)

Tutorial articles can be found in the series: JAMA Guide to Statistics and Medicine, Statistics in Medicine's tutorial papers, Nature's Points of Significance, and the BMJ Statistics Notes and Endgames. Also relevant might be the resources from the Cornell Statistical Consulting Unit.

  • Gram, H. C. (1884). Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschritte der Medizin. 2:185–189.

Description of Gram staining.

  • Koch, R. (1876). Die aetiologie der milzbrand-krankheit, begrundet auf die entwicklungsgeschichte des bacillus antracis. Beitrage zur Biologie der Pflanzen. 2:277–310. DOI:10.25646/5064

Description of the bacillus that causes anthrax.

  • Snow, J. (1855). On the Mode of Communication of Cholera. John Churchill, London.

Mapping of cholera/early field epidemiology.

  • Pasteur, L. (1880). Sur les maladies virulentes et en particulier sur la maladie appelée vulgairement choléra des poules. Comptes Rendus Acad. Sci. 90:249–248.

Discovery of vaccine against fowl cholera.

  • Lotka, A. J. (1910). Contribution to the Theory of Periodic Reaction. J Phys Chem. 14(3):271–274. DOI:10.1021/j150111a004.

Predator-prey model.

  • Ross, R. (1911). The Prevention of Malaria. Murray, London. Second edition.

First mathematical model for malaria.

  • Fisher, R. A. (1922) On the mathematical foundations of theoretical statistics. Philos Trans R Soc Lond A Contain Pap Math Phys Character. 22(594-604):309-368. DOI:10.1098/rsta.1922.0009

  • Kermack, W. O. and McKendrick, A. G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proc. Royal Soc. A. 115(772):700–721. DOI:10.1098/rspa.1927.0118.

The SIR model. Introduces the reproduction number.

  • Kolmogorov, A. (1933) Sulla determinazione empirica di una legge di distribuzione [On the empirical determination of a distribution]

  • de Finetti, B. (1937). La Prévision: ses lois logiques, ses sources subjectives [Foresight: Its logical laws, its subjective sources] Ann Inst Henri Poincaré. 7:1-68

  • Gnedenko, B. (1943) Sur la distribution limite du terme maximum d'une série aléatoire [On the limiting distribution of the maximum term in a random series].

  • Wald, A. (1945). Sequential tests of statistical hypotheses. Ann Math Stat. 16(2):117-186 DOI:{10.1214/aoms/1177731118

  • Wald, A. (1949). Statistical decision functions. Ann Math Stat. 20(2):165-205 DOI:10.1214/aoms/1177730030

  • Robbins, H. (1956). An empirical Bayes approach to statistics.

  • Hayflick, L. (1965). The Limited in vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res. 37(3):614–636. DOI:10.1016/0014-4827(65)90211-9.

WI-38 cells paper (used in vaccine development).

  • Birch, M. W. (1963). Maximum Likelihood in Three-Way Contingency Tables. J R Stat Soc B (Methodol). 25(1):220-233.

  • Cox, D. R. (1972). Regression Models and Life-Tables. J R Stat Soc B (Methodol). 34:187-202. DOI:[10.1111/j.2517-6161.1972.tb00899.x]https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

  • Akaike, H. (1973). Information Theory and an extension of the maximum likelihood principle.

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. 7(1): DOI:10.1214/aos/1176344552

  • Prusiner, S. B. (1982). Novel proteinaceous infectious particles cause scrapie. Science. 216(4542):136–144. DOI:10.1126/science.6801762.

Discovery of prions.

  • Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLOS Medicine 2(8):e124. DOI:10.1371/journal.pmed.0020124.

  • Song, W. T. (2005). Relationships among some univariate distributions. IIE Transactions. 37(7):651-656. DOI:10.1080/07408170590948512.

Includes a figure with relationships between univariate distributions.

  • Leemis, L. M. and McQueston, J. T. (2008). Univariate Distribution Relationships. American Statistician 62(1):45-53. DOI:10.1198/000313008X270448.

Includes a figure with relationships between univariate distributions. Updates previous article by Leemis (1986).

  • Bennett, C. M., Baird, A. A., Miller, M. B., and Wolford G. L. (2010). Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction. J. Serendipitous Unexpected Results. 1(1):1–5

The dead salmon study. Highlights issues with multiple testing.

  • Lloyd-Smith, J. O., Mollison, D., Metcalf, J. E., Klepac, P., and Heesterbeek, J. A. P. (2015) Challenges in Modelling Infectious Disease Dynamics. 10 DOI(to editors preface of special edition):10.1016/j.epidem.2015.02.001.

Provides overviews of some topics/can be used as a quick reference

  • Halsey, L. G. (2019). The reign of the p-value is over: what alternative analyses could we employ to fill the power vacuum? Biol. Lett. 15:20190174 DOI:10.1098/rsbl.2019.0174

  • Kennedy-Shaffer, L. (2019). Before p<0.05 to Beyond p<0.05: Using History to Contextualize p-Values and Significance Testing. Am. Stat. 73(sup1):82-90 DOI:10.1080/00031305.2018.1537891

Historical context for Fisher and Neyman