-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_3.mod
171 lines (128 loc) · 5.44 KB
/
example_3.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/* Vehicle Routing Problem
A set of airplanes are initially distributed among a set of
starting locations. They are to be assigned routes to collectively
visit a specified set of customers then return the the planes to
designated finishing locations. The optimization objective is to
minimize the total great circle distance.
The data consists of a set of locations with latitude and longitude
information, a list of customers and their respective locations, and
a set of aircraft and their starting and finishing locations. The
aircraft must start and finish at different locations (if needed,
dummy locations with the same latitude and longitude can be
included in the list of locations).
Jeffrey Kantor
March, 2013
*/
# DATA SETS (TO BE GIVEN IN THE DATA SECTION)
# CUSTOMERS is a set of (name,location) pairs
set CUSTOMERS dimen 2;
# PLANES is a set of (name, start_location, finish_location) triples
set PLANES dimen 3;
# set of locations
set LOCATIONS;
param lat{LOCATIONS};
param lng{LOCATIONS};
# DATA PREPROCESSING
# set of planes
set P := setof {(p,sLoc,fLoc) in PLANES} p;
# create a complete of nodes as (name, location) pairs
set START := setof {(p,sLoc,fLoc) in PLANES} (p,sLoc);
set FINISH := setof {(p,sLoc,fLoc) in PLANES} (p,fLoc);
set N := CUSTOMERS union (START union FINISH);
# great circle distances between locations
param d2r := 3.1415926/180;
param alpha{a in LOCATIONS, b in LOCATIONS} := sin(d2r*(lat[a]-lat[b])/2)**2
+ cos(d2r*lat[a])*cos(d2r*lat[b])*sin(d2r*(lng[a]-lng[b])/2)**2;
param gcdist{a in LOCATIONS, b in LOCATIONS} :=
2*6371*atan( sqrt(alpha[a,b]), sqrt(1-alpha[a,b]) );
# DECISION VARIABLES
# x[p,a,aLoc,b,bLoc] = 1 if plane p flies from (a,aLoc) to (b,bLoc)
var x{P, N, N} binary;
# START AND FINISH CONSTRAINTS
# no planes arrive at the start nodes
s.t. sf1 {p in P, (a,aLoc) in N, (b,bLoc) in START} : x[p,a,aLoc,b,bLoc] = 0;
# no planes leave the finish nodes
s.t. sf2 {p in P, (a,aLoc) in FINISH, (b,bLoc) in N} : x[p,a,aLoc,b,bLoc] = 0;
# planes must leave from their own start nodes
s.t. sf3 {p in P, (a,aLoc) in START, (b,bLoc) in N : p != a} : x[p,a,aLoc,b,bLoc] = 0;
# planes must return to their own finish nodes
s.t. sf4 {p in P, (a,aLoc) in N, (b,bLoc) in FINISH : p != b} : x[p,a,aLoc,b,bLoc] = 0;
# NETWORK CONSTRAINTS
# one plane arrives at each customer and finish node
s.t. nw1 {(b,bLoc) in (CUSTOMERS union FINISH)} :
sum {p in P, (a,aLoc) in (CUSTOMERS union START)} x[p,a,aLoc,b,bLoc] = 1;
# one plane leaves each start and customer node
s.t. nw2 {(a,aLoc) in (START union CUSTOMERS)} :
sum {p in P, (b,bLoc) in (CUSTOMERS union FINISH)} x[p,a,aLoc,b,bLoc] = 1;
# planes entering a customer node must leave the same node
s.t. nw3 {p in P, (a,aLoc) in CUSTOMERS} :
sum {(b,bLoc) in (CUSTOMERS union START)} x[p,b,bLoc,a,aLoc]
= sum {(b,bLoc) in (CUSTOMERS union FINISH)} x[p,a,aLoc,b,bLoc];
# no self loops
s.t. nw4 {p in P, (a,aLoc) in N, (b,bLoc) in N : (a=b) && (aLoc=bLoc)} :
x[p,a,aLoc,b,bLoc] = 0;
# SUBTOUR ELIMINATION CONSTRAINTS
var y{P,N,N} integer, >= 0;
# route capacity
s.t. sb1 {p in P, (a,aLoc) in N, (b,bLoc) in N} :
y[p,a,aLoc,b,bLoc] <= card(CUSTOMERS)*x[p,a,aLoc,b,bLoc];
# allocate tokens to links from the start nodes
s.t. sb2 : sum {p in P, (a,aLoc) in START, (b,bLoc) in N } y[p,a,aLoc,b,bLoc]
= card(CUSTOMERS);
# decrease tokens for each step on a path
s.t. sb3 {(a,aLoc) in CUSTOMERS} :
sum{p in P, (b,bLoc) in (CUSTOMERS union START)} y[p,b,bLoc,a,aLoc]
= 1 + sum{p in P, (b,bLoc) in (CUSTOMERS union FINISH)} y[p,a,aLoc,b,bLoc];
# OBJECTIVE
var routeDistance{P} >= 0;
s.t. ob1 {p in P} : routeDistance[p]
= sum{(a,aLoc) in N, (b,bLoc) in N} gcdist[aLoc,bLoc]*x[p,a,aLoc,b,bLoc];
var routeLegs{P} >= 0;
s.t. ob2 {p in P} : routeLegs[p] = sum{(a,aLoc) in START, (b,bLoc) in N} y[p,a,aLoc,b,bLoc];
var maxDistance >= 0;
s.t. ob3 {p in P} : routeDistance[p] <= maxDistance;
var maxLegs >= 0;
s.t. ob4 {p in P} : routeLegs[p] <= maxLegs;
minimize distance : sum{p in P} routeDistance[p];
solve;
# OUTPUT POST-PROCESSING
for {p in P} {
printf "\nRouting for %s\n-------------------\n", p;
printf "%-20s %-20s %10s \n", 'Depart','Arrive','Dist.';
for {k in routeLegs[p]..0 by -1} {
printf {(a,aLoc) in N, (b,bLoc) in N :
(x[p,a,aLoc,b,bLoc] = 1) && (y[p,a,aLoc,b,bLoc]=k)}
"%-12s %-5s %-12s %-5s %10.1f km\n",a,aLoc,b,bLoc,gcdist[aLoc,bLoc];
}
printf "%42s %13s\n", '', '---------';
printf "%42s %10.1f km\n\n", 'GC Distance Traveled:', routeDistance[p];
}
# DATA SECTION
data;
set CUSTOMERS :=
( 'Atlanta', ATL )
( 'Boston', BOS )
( 'Denver', DEN )
( 'Dallas', DFW )
( 'New York', JFK )
( 'Los Angeles', LAX )
( 'Chicago', ORD )
( 'St. Louis', STL )
;
set PLANES :=
( 'Plane 1', ORD, ORD_) # use a duplicate location to return place to ORD
( 'Plane 2', DFW, DRW_) # use a duplicate location to return plane to DFW
;
param : LOCATIONS : lat lng :=
ATL 33.6366995 -84.4278639
BOS 42.3629722 -71.0064167
DEN 39.8616667 -104.6731667
DFW 32.8968281 -97.0379958
DRW_ 32.8968281 -97.0379958 # duplicate PLANES
JFK 40.6397511 -73.7789256
LAX 33.9424955 -118.4080684
ORD 41.9816486 -87.9066714
ORD_ 41.9816486 -87.9066714 # duplicate PLANES
STL 38.7486972 -90.3700289
;
end;