-
Notifications
You must be signed in to change notification settings - Fork 268
/
Copy pathtunnelling2.py
73 lines (60 loc) · 2.68 KB
/
tunnelling2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""Quantum Tunnelling effect using 4th order Runge-Kutta
method with arbitrary potential shape."""
from vedo import *
nsteps = 150 # number of steps in time
n = 300 # number of points in 1d space
dt = 0.004 # time step
x0 = 6 # peak initial position
s0 = 0.75 # uncertainty on particle position
k0 = 10 # initial momentum of the wave packet
Vmax = 0.2 # height of the barrier (try 0 for particle in empty box)
size = 20.0 # x axis span [0, size]
# Uncomment below for more examples of the potential V(x).
x = np.linspace(0, size, n+2)
V = 0.15 * np.sin(1.5 * (x - 7)) # particle hitting a sinusoidal barrier
# V = Vmax*(np.abs(x-11) < 0.5)-0.01 # simple square barrier potential
# V = -0.5*(np.abs(x-11) < 1.7)-0.01 # a wide square well potential
# V = 0.008*(x-10)**2 # elastic potential well
# V = 0.05*(x-10) # particle on a slope bouncing back
# V = 0.0 * x # free particle
Psi = np.sqrt(1/s0) * np.exp(-1/2 * ((x-x0)/s0)**2 + 1j*x*k0) # wave packet
dx2 = ((x[-1] - x[0]) / (n+2))**2 * 400 # dx**2 step, scaled
nabla2psi = np.zeros(n+2, dtype=complex)
def f(psi):
# a smart numpy way to calculate the second derivative in x:
nabla2psi[1 : n+1] = (psi[0:n] + psi[2 : n+2] - 2 * psi[1 : n+1]) / dx2
return 1j * (nabla2psi - V*psi) # this is the RH of Schroedinger equation!
def d_dt(psi): # find Psi(t+dt)-Psi(t) /dt with 4th order Runge-Kutta method
k1 = f(psi)
k2 = f(psi + dt / 2 * k1)
k3 = f(psi + dt / 2 * k2)
k4 = f(psi + dt * k3)
return (k1 + 2 * k2 + 2 * k3 + k4) / 6
plt = Plotter(interactive=False)
pic = Image(dataurl+"images/schrod.png").pos(0, -5, -0.1).scale(0.0255)
barrier = Line(np.stack((x, V*15, np.zeros_like(x)), axis=1), c="black", lw=2)
barrier.name = "barrier"
plt.show(pic, barrier, __doc__)
lines = []
for i in range(nsteps):
for j in range(500):
Psi += d_dt(Psi) * dt # integrate for a while before showing things
A = np.real(Psi * np.conj(Psi)) * 1.5 # psi squared, probability(x)
coords = np.stack((x, A), axis=1)
Aline = Line(coords).color("db").linewidth(3)
lines.append([Aline, A]) # store objects
plt.remove("Line").add(Aline).render()
# now show the same lines along z representing time
plt.objects= [] # clean up internal list of objects to show
plt.elevation(20).azimuth(20)
barrier.color('black', 0.3)
barrier_end = barrier.clone().pos([0,0,20])
rib = Ribbon(barrier, barrier_end).c("black",0.1)
plt.add(rib)
plt.reset_camera()
for i in range(nsteps):
p = [0, 0, i*size/nsteps] # shift along z
line, A = lines[i]
line.cmap("gist_earth_r", A).pos(p)
plt.add(pic, line).render()
plt.interactive().close()