-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathdom_test.py
610 lines (496 loc) · 21.8 KB
/
dom_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
import csv
import difflib
import json
import os
import re
from lxml import etree
ignoredAttrib = {'style', 'type'}
matched21 = {}
matched12 = {}
matched12_xpaths = {}
nodes_info = {1: {}, 2: {}}
chrome_tree = None
firefox_tree = None
THRESHOLD_LEVEL = 0.75
THRESHOLD_GLOBAL = 0.85
folder = 'data'
dom_files_chrome = ['_'.join(f.split('_')[:-1]) for f in os.listdir(folder) if 'dom' in f and 'chrome' in f]
dom_files_firefox = ['_'.join(f.split('_')[:-1]) for f in os.listdir(folder) if 'dom' in f and 'firefox' in f]
dom_files = list(set(dom_files_firefox) & set(dom_files_chrome))
tagsIgnore = {'A', 'AREA', 'B', 'BLOCKQUOTE',
'BR', 'CANVAS', 'CENTER', 'CSACTIONDICT', 'CSSCRIPTDICT', 'CUFON',
'CUFONTEXT', 'DD', 'EM', 'EMBED', 'FIELDSET', 'FONT', 'FORM',
'HEAD', 'HR', 'I', 'LABEL', 'LEGEND', 'LINK', 'MAP', 'MENUMACHINE',
'META', 'NOFRAMES', 'NOSCRIPT', 'OBJECT', 'OPTGROUP', 'OPTION',
'PARAM', 'S', 'SCRIPT', 'SMALL', 'SPAN', 'STRIKE', 'STRONG',
'STYLE', 'TBODY', 'TITLE', 'TR', 'TT', 'U', 'UL'}
tagsContainer = {'DD', 'DIV', 'DT', 'P',
'TD', 'TR'}
SIZE_DIFF_THRESH = 0.7
SIZE_DIFF_IGNORE = 0.1
def processAttributes(attrib):
for key in ignoredAttrib:
attrib.pop(key, None)
return attrib
def cleanAndCompare(str1, str2):
str1 = re.sub(r'[\'\'\\s]', '', str1)
str2 = re.sub(r'[\'\'\\s]', '', str2)
return str1 == str2
def mapDiff(x, y):
matchCount = 0
for key in x.keys():
if key in y.keys() and cleanAndCompare(x[key], y[key]):
matchCount += 1
for key in y.keys():
if key in x.keys() and cleanAndCompare(x[key], y[key]):
matchCount += 1
return matchCount
def getMapSimilarity(x, y):
if not x and not y:
return 1
total = len(x) + len(y)
return mapDiff(x, y) / total
def calculateMatchIndex(x, y):
XPATH = 0.75
ATTRIB = 0.25
xPath1 = chrome_tree.getpath(x)
xPath2 = firefox_tree.getpath(y)
if xPath1 == xPath2:
xPathSim = 1
else:
xPathSim = difflib.SequenceMatcher(None, xPath1, xPath2).ratio()
attrib_x = processAttributes(x.attrib)
attrib_y = processAttributes(y.attrib)
attribSim = getMapSimilarity(attrib_x, attrib_y)
return XPATH * xPathSim + ATTRIB * attribSim
def ExactMatchVisitor(root1, root2):
global matched21, matched12
for node1 in root1.iter(tag=etree.Element):
for node2 in root2.iter(tag=etree.Element):
if node1.tag == node2.tag:
if node2 not in matched21.keys():
matchIndex = calculateMatchIndex(node1, node2)
if matchIndex == 1.0:
matched12[node1] = node2
matched21[node2] = node1
break
def AssignLevelVisitor(root, sno):
levels = []
for node in root.iter(tag=etree.Element):
if node.getparent() is None:
nodes_info[sno][node]['level'] = 0
levels.append([])
levels[0].append(node)
else:
nodes_info[sno][node]['level'] = nodes_info[sno][node.getparent()]['level'] + 1
if len(levels) == nodes_info[sno][node]['level']:
levels.append([])
levels[nodes_info[sno][node]['level']].append(node)
return levels
def ApproxMatchVisitor(worklist, root2):
global matched21, matched12
for node1 in worklist:
bestMatchIndex = 0
bestMatchNode = None
for node2 in root2.iter(tag=etree.Element):
if node1.tag == node2.tag:
if node2 not in matched21.keys():
matchIndex = calculateMatchIndex(node1, node2)
if matchIndex > THRESHOLD_GLOBAL and matchIndex > bestMatchIndex:
bestMatchIndex = matchIndex
bestMatchNode = node2
if bestMatchNode is not None:
matched12[node1] = bestMatchNode
matched21[bestMatchNode] = node1
def do_match(root1, root2):
global matched21, matched12
# 1. perfect matching
ExactMatchVisitor(root1, root2)
# Assign Levels
AssignLevelVisitor(root1, 1)
levels2 = AssignLevelVisitor(root2, 2)
unmatched_nodes = [node for node in set(chrome_etree.iter(tag=etree.Element)) - set(matched12.keys())]
worklist = []
# 2. level matching
for node in unmatched_nodes:
level = nodes_info[1][node]['level']
if level < len(levels2):
lnodes = levels2[level]
bestMatchIndex = 0
bestMatchNode = None
for ln in lnodes:
if ln not in matched21.keys():
matchIndex = calculateMatchIndex(node, ln)
if matchIndex > THRESHOLD_LEVEL and matchIndex > bestMatchIndex:
bestMatchIndex = matchIndex
bestMatchNode = ln
if bestMatchNode is not None:
matched12[node] = bestMatchNode
matched21[bestMatchNode] = node
else:
worklist.append(node)
# 3. Approximate global matching
ApproxMatchVisitor(worklist, root2)
def isLayoutNode(node, xpath, loc):
if node.tag.upper() in tagsIgnore:
return False
if xpath not in loc:
return False
x1 = loc[xpath]['x']
y1 = loc[xpath]['y']
height = loc[xpath]['height']
width = loc[xpath]['width']
x2 = x1 + width
y2 = y1 + height
if x1 < 0 or y1 < 0 or x2 <= 0 or y2 <= 0:
return False
negligible_dim = 5
if height <= negligible_dim or width <= negligible_dim:
return False
if node.tag.upper() in tagsContainer:
if len(node) == 0:
return False
hasVisibleChild = False
for child in node:
if child.text is not None or child.tag.upper() not in tagsIgnore:
hasVisibleChild = True
if hasVisibleChild is False:
return False
return True
def contains(n, node, loc):
n_x1 = loc[n]['x']
n_y1 = loc[n]['y']
n_x2 = n_x1 + loc[n]['width']
n_y2 = n_y1 + loc[n]['height']
node_x1 = loc[node]['x']
node_y1 = loc[node]['y']
node_x2 = node_x1 + loc[node]['width']
node_y2 = node_y1 + loc[node]['height']
if n_x1 <= node_x1 and n_y1 <= node_y1 and n_x2 >= node_x2 and n_y2 >= node_y2:
return True
return False
def get_area(node, loc):
return loc[node]['height'] * loc[node]['width']
def hasSignificantSizeDiff(p, c):
pcSizeDiff = c / p
if pcSizeDiff < SIZE_DIFF_THRESH and pcSizeDiff > SIZE_DIFF_IGNORE:
return True
return False
def calcError(a, b, delta):
return abs(a - b) / delta
def populate_contain_alignments(parent, child, loc):
deltaH = 5
deltaW = 5
edge_info = {'SizeDiffX': False,
'xError': 0,
'hFill': False,
'LeftJustified': False,
'RightJustified': False,
'Centered': False,
'SizeDiffY': False,
'yError': 0,
'vFill': False,
'TopAligned': False,
'BottomAligned': False,
'Middle': False
}
p_x1 = loc[parent]['x']
p_x2 = loc[parent]['x'] + loc[parent]['width']
p_y1 = loc[parent]['y']
p_y2 = loc[parent]['y'] + loc[parent]['height']
c_x1 = loc[child]['x']
c_x2 = loc[child]['x'] + loc[child]['width']
c_y1 = loc[child]['y']
c_y2 = loc[child]['y'] + loc[child]['height']
px = (p_x1 + p_x2) / 2
py = (p_y1 + p_y2) / 2
cx = (c_x1 + c_x2) / 2
cy = (c_y1 + c_y2) / 2
pw = loc[parent]['width']
cw = loc[child]['width']
dW = cw / 3
ph = loc[parent]['height']
ch = loc[child]['height']
dH = ch / 3
if cw < 15 and pw < 15:
return edge_info
if hasSignificantSizeDiff(pw, cw):
edge_info['SizeDiffX'] = True
if abs(px - cx) <= deltaW and abs(p_x1 - c_x1) <= deltaW and abs(p_x2 - c_x2) <= deltaW:
edge_info['hFill'] = True
else:
if abs(c_x1 - p_x1) <= dW:
edge_info['LeftJustified'] = True
edge_info['xError'] = calcError(c_x1, p_x1, dW)
elif abs(c_x2 - c_x2) <= dW:
edge_info['RightJustified'] = True
edge_info['xError'] = calcError(c_x2, c_x2, dW)
elif abs(cx - px) <= dW:
edge_info['Centered'] = True
edge_info['xError'] = calcError(cx, px, dW)
if hasSignificantSizeDiff(ph, ch):
edge_info['SizeDiffY'] = True
if abs(py - cy) <= deltaW and abs(p_y1 - c_y1) <= deltaH and abs(p_y2 - c_y2) <= deltaH:
edge_info['hFill'] = True
else:
if abs(c_y1 - p_y1) <= dH:
edge_info['TopAligned'] = True
edge_info['yError'] = calcError(c_y1, p_y1, dH)
elif abs(c_y2 - p_y2) <= dH:
edge_info['BottomAligned'] = True
edge_info['yError'] = calcError(c_y2, p_y2, dH)
elif abs(cy - py) <= dH:
edge_info['Middle'] = True
edge_info['yError'] = calcError(cy, py, dH)
return edge_info
def populate_parent_edges(nodes, loc, contains_edge_info):
cMap = {}
while len(nodes) > 0:
node = nodes[0]
nodes.pop(0)
parent = None
for n in nodes:
if contains(n, node, loc):
if parent is not None and get_area(parent, loc) <= get_area(n, loc):
continue
parent = n
if parent is not None:
if parent not in cMap:
cMap[parent] = []
cMap[parent].append(node)
contains_edge_info[(parent, node)] = populate_contain_alignments(parent, node, loc)
return cMap
def populate_sibling_properties(node1, node2, loc):
deltaH = 5
deltaW = 5
edge_info = {'LeftEdgeAligned': False,
'RightEdgeAligned': False,
'TopEdgeAligned': False,
'BottomEdgeAligned': False,
'LeftRight': False,
'RightLeft': False,
'TopBottom': False,
'BottomTop': False,
'TBDiff': 0,
'BTDiff': 0,
'RLDiff': 0,
'LRDiff': 0
}
node1_x1 = loc[node1]['x']
node1_x2 = loc[node1]['x'] + loc[node1]['width']
node1_y1 = loc[node1]['y']
node1_y2 = loc[node1]['y'] + loc[node1]['height']
node2_x1 = loc[node2]['x']
node2_x2 = loc[node2]['x'] + loc[node2]['width']
node2_y1 = loc[node2]['y']
node2_y2 = loc[node2]['y'] + loc[node2]['height']
edge_info['TBDiff'] = abs(node1_y1 - node2_y2)
edge_info['BTDiff'] = abs(node1_y2 - node2_y1)
edge_info['LRDiff'] = abs(node1_x2 - node2_x1)
edge_info['RLDiff'] = abs(node1_x1 - node2_x2)
if abs(node1_x1 - node2_x1) <= deltaW:
edge_info['LeftEdgeAligned'] = True
if abs(node1_x2 - node2_x2) <= deltaW:
edge_info['RightEdgeAligned'] = True
if abs(node1_y1 - node2_y1) <= deltaH:
edge_info['TopEdgeAligned'] = True
if abs(node1_y2 - node2_y2) <= deltaH:
edge_info['BottomEdgeAligned'] = True
if node1_x2 < node2_x1:
edge_info['LeftRight'] = True
if node2_x2 < node1_x1:
edge_info['RightLeft'] = True
if node1_y2 < node2_y1:
edge_info['TopBottom'] = True
if node2_y2 < node1_y1:
edge_info['BottomTop'] = True
return edge_info
def populate_sibling_edges(cMap, loc, siblings_edge_info):
for value in cMap.values():
siblings = value[:]
while len(siblings) > 0:
node = siblings[0]
siblings.pop(0)
for n in siblings:
siblings_edge_info[(node, n)] = populate_sibling_properties(node, n, loc)
siblings_edge_info[(n, node)] = populate_sibling_properties(n, node, loc)
def get_parent(c, cMap):
for parent, children in cMap.items():
for child in children:
if child == c:
return parent
return None
def testSizeDiff(p1, p2, e1, e2):
if p1 ^ p2:
if p1 and e1 < 0.8:
return True
if p2 and e2 < 0.8:
return True
return False
def isSignificantDiff(a, b):
diffThreshold = 5
if abs(a - b) > diffThreshold:
return True
return False
def compare_parents(c1, c2, cMap1, cMap2, contains_edge_info1, contains_edge_info2):
issues = []
p1 = get_parent(c1, cMap1)
p2 = get_parent(c2, cMap2)
if p1 is None and p2 is None:
return issues
elif p1 is None and p2 is not None:
issues.append('MISSING-PARENT-1 %s %s' % (c1, c2))
return issues
elif p1 is not None and p2 is None:
issues.append('MISSING-PARENT-2 %s %s' % (c1, c2))
return issues
expected_p2 = matched12_xpaths[p1]
if expected_p2 != p2:
issues.append('PARENTS DIFFER (%s-%s) (%s-%s)' % (c1, c2, p2, expected_p2))
return issues
# matching SizeDiffY for both c1 and c2 as we are comparing y values in it. (different from xperts implementation)
if contains_edge_info1[(p1, c1)]['SizeDiffY'] and contains_edge_info2[(p2, c2)]['SizeDiffY']:
if testSizeDiff(contains_edge_info1[(p1, c1)]['TopAligned'], contains_edge_info2[(p2, c2)]['TopAligned'], contains_edge_info1[(p1, c1)]['yError'], contains_edge_info2[(p2, c2)]['yError']):
issues.append('TOP-ALIGNMENT %s %s' % (c1, c2))
if testSizeDiff(contains_edge_info1[(p1, c1)]['BottomAligned'], contains_edge_info2[(p2, c2)]['BottomAligned'], contains_edge_info1[(p1, c1)]['yError'], contains_edge_info2[(p2, c2)]['yError']):
issues.append('BOTTOM-ALIGNMENT %s %s' % (c1, c2))
if testSizeDiff(contains_edge_info1[(p1, c1)]['Middle'], contains_edge_info2[(p2, c2)]['Middle'], contains_edge_info1[(p1, c1)]['yError'], contains_edge_info2[(p2, c2)]['yError']):
issues.append('VMID-ALIGNMENT %s %s' % (c1, c2))
if contains_edge_info1[(p1, c1)]['vFill'] ^ contains_edge_info2[(p2, c2)]['vFill']:
issues.append('VFILL %s %s' % (c1, c2))
if contains_edge_info1[(p1, c1)]['SizeDiffX'] and contains_edge_info2[(p2, c2)]['SizeDiffX']:
if testSizeDiff(contains_edge_info1[(p1, c1)]['LeftJustified'], contains_edge_info2[(p2, c2)]['LeftJustified'], contains_edge_info1[(p1, c1)]['xError'], contains_edge_info2[(p2, c2)]['xError']):
issues.append('LEFT-JUSTIFICATION %s %s' % (c1, c2))
if testSizeDiff(contains_edge_info1[(p1, c1)]['RightJustified'], contains_edge_info2[(p2, c2)]['RightJustified'], contains_edge_info1[(p1, c1)]['xError'], contains_edge_info2[(p2, c2)]['xError']):
issues.append('RIGHT-JUSTIFICATION %s %s' % (c1, c2))
if testSizeDiff(contains_edge_info1[(p1, c1)]['Centered'], contains_edge_info2[(p2, c2)]['Centered'], contains_edge_info1[(p1, c1)]['xError'], contains_edge_info2[(p2, c2)]['xError']):
issues.append('CENTER-ALIGNMENT %s %s' % (c1, c2))
if contains_edge_info1[(p1, c1)]['hFill'] ^ contains_edge_info2[(p2, c2)]['hFill']:
issues.append('HFILL %s %s' % (c1, c2))
return issues
def get_siblings(c, cMap):
for parent, children in cMap.items():
for child in children:
if child == c:
children.remove(child)
return children[:]
return []
def compare_siblings(c1, c2, cMap1, cMap2, siblings_edge_info1, siblings_edge_info2):
issues = []
s_c1 = get_siblings(c1, cMap1)
s_c2 = get_siblings(c2, cMap2)
matched = {}
unmatch1 = []
unmatch2 = []
for s1 in s_c1:
match = False
for s2 in s_c2:
if matched12_xpaths[s1] == s2:
matched[s1] = s2
s_c2.remove(s2)
match = True
break
if match is False:
unmatch1.append(s1)
unmatch2 = s_c2
for sib in unmatch1:
issues.append('MISSING-SIBLING-1 - %s' % sib)
for sib in unmatch2:
issues.append('MISSING-SIBLING-2 - %s' % sib)
for x, y in matched.items():
if siblings_edge_info1[(c1, x)]['TopEdgeAligned'] ^ siblings_edge_info2[(c2, y)]['TopEdgeAligned']:
issues.append('TOP-EDGE-ALIGNMENT %s - %s' % (x, y))
if siblings_edge_info1[(c1, x)]['RightEdgeAligned'] ^ siblings_edge_info2[(c2, y)]['RightEdgeAligned']:
issues.append('RIGHT-EDGE-ALIGNMENT %s - %s' % (x, y))
if siblings_edge_info1[(c1, x)]['BottomEdgeAligned'] ^ siblings_edge_info2[(c2, y)]['BottomEdgeAligned']:
issues.append('BOTTOM-EDGE-ALIGNMENT %s - %s' % (x, y))
if siblings_edge_info1[(c1, x)]['LeftEdgeAligned'] ^ siblings_edge_info2[(c2, y)]['LeftEdgeAligned']:
issues.append('LEFT-EDGE-ALIGNMENT %s - %s' % (x, y))
if siblings_edge_info1[(c1, x)]['TopBottom'] ^ siblings_edge_info2[(c2, y)]['TopBottom'] and isSignificantDiff(siblings_edge_info1[(c1, x)]['TBDiff'], siblings_edge_info2[(c2, y)]['TBDiff']):
issues.append('TOP-BOTTOM %s - %s' % (x, y))
if siblings_edge_info1[(c1, x)]['BottomTop'] ^ siblings_edge_info2[(c2, y)]['BottomTop'] and isSignificantDiff(siblings_edge_info1[(c1, x)]['BTDiff'], siblings_edge_info2[(c2, y)]['BTDiff']):
issues.append('BOTTOM-TOP %s - %s' % (x, y))
if siblings_edge_info1[(c1, x)]['LeftRight'] ^ siblings_edge_info2[(c2, y)]['LeftRight'] and isSignificantDiff(siblings_edge_info1[(c1, x)]['LRDiff'], siblings_edge_info2[(c2, y)]['LRDiff']):
issues.append('LEFT-RIGHT %s - %s' % (x, y))
if siblings_edge_info1[(c1, x)]['RightLeft'] ^ siblings_edge_info2[(c2, y)]['RightLeft'] and isSignificantDiff(siblings_edge_info1[(c1, x)]['RLDiff'], siblings_edge_info2[(c2, y)]['RLDiff']):
issues.append('RIGHT-LEFT %s - %s' % (x, y))
return issues
# 1 -> chrome 2 -> firefox
results = []
for dom_file in dom_files:
matched21 = {}
matched12 = {}
matched12_xpaths = {}
chrome_dom_file = os.path.join(folder, dom_file + '_chrome.txt')
firefox_dom_file = os.path.join(folder, dom_file + '_firefox.txt')
chrome_loc_file = os.path.join(folder, dom_file.replace('dom', 'loc') + '_chrome.txt')
firefox_loc_file = os.path.join(folder, dom_file.replace('dom', 'loc') + '_firefox.txt')
print(chrome_dom_file)
print(firefox_dom_file)
with open(chrome_dom_file, 'r') as f:
chrome_dom = f.read()
with open(firefox_dom_file, 'r') as f:
firefox_dom = f.read()
with open(chrome_loc_file, 'r') as f:
chrome_loc = json.load(f)
with open(firefox_loc_file, 'r') as f:
firefox_loc = json.load(f)
chrome_etree = etree.HTML(chrome_dom)
firefox_etree = etree.HTML(firefox_dom)
chrome_tree = etree.ElementTree(chrome_etree)
firefox_tree = etree.ElementTree(firefox_etree)
for node in chrome_etree.iter(tag=etree.Element):
nodes_info[1][node] = {}
for node in firefox_etree.iter(tag=etree.Element):
nodes_info[2][node] = {}
chrome_nodes = list(chrome_etree.iter(tag=etree.Element))
firefox_nodes = list(firefox_etree.iter(tag=etree.Element))
print('Chrome Nodes : %d' % len(chrome_nodes))
print('Firefox Nodes : %d' % len(firefox_nodes))
# Below condition is not implemented in xpert. Since algorithm is slow, this is just a check.
if len(chrome_nodes) + len(firefox_nodes) > 1700:
print('Large number of nodes to match -- skipping\n\n')
continue
do_match(chrome_etree, firefox_etree)
print('Matched Nodes (without alignment): %d' % len(matched21))
vertices_chrome = []
vertices_firefox = []
for chrome_node, firefox_node in matched12.items():
chrome_xpath = chrome_tree.getpath(chrome_node)
firefox_xpath = firefox_tree.getpath(firefox_node)
matched12_xpaths[chrome_xpath] = firefox_xpath
if isLayoutNode(chrome_node, chrome_xpath, chrome_loc):
vertices_chrome.append(chrome_xpath)
if isLayoutNode(firefox_node, firefox_xpath, firefox_loc):
vertices_firefox.append(firefox_xpath)
vertices_chrome = sorted(vertices_chrome, key=lambda x: (chrome_loc[x]['height'] * chrome_loc[x]['width'], len(x)))
vertices_firefox = sorted(vertices_firefox, key=lambda x: (firefox_loc[x]['height'] * firefox_loc[x]['width'], len(x)))
chrome_contains_edge_info = {}
firefox_contains_edge_info = {}
chrome_cMap = populate_parent_edges(vertices_chrome[:], chrome_loc, chrome_contains_edge_info)
firefox_cMap = populate_parent_edges(vertices_firefox[:], firefox_loc, firefox_contains_edge_info)
chrome_siblings_edge_info = {}
firefox_siblings_edge_info = {}
populate_sibling_edges(chrome_cMap, chrome_loc, chrome_siblings_edge_info)
populate_sibling_edges(firefox_cMap, firefox_loc, firefox_siblings_edge_info)
issues = []
total_matched_nodes = len(matched21)
for chrome_xpath, firefox_xpath in matched12_xpaths.items():
parent_issues = compare_parents(chrome_xpath, firefox_xpath, chrome_cMap, firefox_cMap, chrome_contains_edge_info, firefox_contains_edge_info)
sibling_issues = compare_siblings(chrome_xpath, firefox_xpath, chrome_cMap, firefox_cMap, chrome_siblings_edge_info, firefox_siblings_edge_info)
if len(parent_issues) or len(sibling_issues):
total_matched_nodes -= 1
issues.extend(parent_issues)
issues.extend(sibling_issues)
print('Matched Nodes (with alignment): %d\n\n' % total_matched_nodes)
image_name = '_'.join(dom_file.split('_')[1:])
if total_matched_nodes == min(len(chrome_nodes), len(firefox_nodes)):
label = 'y'
else:
label = 'n'
results.append([image_name, label, total_matched_nodes, len(chrome_nodes), len(firefox_nodes)])
with open('dom_test_labels.csv', 'w', newline='') as f:
writer = csv.writer(f, delimiter=',')
writer.writerow(['Image Name', 'Label', 'Matched Nodes', 'Chrome Nodes', 'Firefox Nodes'])
for row in results:
writer.writerow(row)