diff --git a/src/canu b/src/canu index 39ef0f2..f405dd3 160000 --- a/src/canu +++ b/src/canu @@ -1 +1 @@ -Subproject commit 39ef0f2ff77d4252bd12bdbad621568fc8723c87 +Subproject commit f405dd3da2c7ea00a405d95363152944de6f84e8 diff --git a/src/scripts/scaffolding/path_storage.py b/src/scripts/scaffolding/path_storage.py index 9f4beed..8494da0 100755 --- a/src/scripts/scaffolding/path_storage.py +++ b/src/scripts/scaffolding/path_storage.py @@ -76,6 +76,7 @@ def addPath(self, line): edges = list(filter(None, edges)) self.paths[arr[0]] = edges self.path_lengths[arr[0]] = total_l + self.node_to_paths_counted = False def addPathWithId(self, id, path): total_l = 0 @@ -85,6 +86,7 @@ def addPathWithId(self, id, path): total_l += self.G.nodes[node]['length'] self.paths[id] = path self.path_lengths[id] = total_l + self.node_to_paths_counted = False def getLabel(self, path_id): return self.hap_labels[path_id] @@ -95,6 +97,7 @@ def readFromFile(self, rukki_file): if arr[0] == "name": continue self.addPath(line.strip()) + self.node_to_paths_counted = False def getEdgeMultiplicities(self): multiplicities = {} diff --git a/src/scripts/scaffolding/scaffold_graph.py b/src/scripts/scaffolding/scaffold_graph.py index c58dbc3..966ab1d 100755 --- a/src/scripts/scaffolding/scaffold_graph.py +++ b/src/scripts/scaffolding/scaffold_graph.py @@ -138,8 +138,12 @@ def __init__(self, rukki_paths, telomere_locations_file, hic_alignment_file, mat else: self.logger.info ("Loading Hi-C alignments") all_connections, unique_connections = self.get_connections_bam(hic_alignment_file, True) + + self.all_connections = all_connections self.unique_connections = unique_connections + self.all_connections_nodemap = self.getConnectionsNodemap(all_connections) + self.unique_connections_nodemap = self.getConnectionsNodemap(unique_connections) self.output_basename = "scaff_rukki.paths" telomeric_ends = self.getTelomericEnds() @@ -186,40 +190,21 @@ def __init__(self, rukki_paths, telomere_locations_file, hic_alignment_file, mat self.logger.info("Pairwise distances in assembly graph calculated") self.haploids = self.getHaploidPaths(self.rukki_paths) - #bam should be prefiltered - #all_connections = self.get_connections_bam("../", True) - self.scores = {} self.unique_scores = {} - ''' - for from_path_id in self.rukki_paths.getPathIds(): - scores[from_path_id] = {} - unique_scores[from_path_id] = {} - - for to_path_id in self.rukki_paths.getPathIds(): - if to_path_id == from_path_id: - continue - scores[from_path_id][to_path_id] = self.getPathPairConnections([from_path_id, to_path_id], all_connections, self.uncompressed_lens) - unique_scores[from_path_id][to_path_id] = self.getPathPairConnections([from_path_id, to_path_id], unique_connections, self.uncompressed_lens) - #scores[from_path_id][to_path_id] = self.getPresavedPathPairConnections([from_path_id, to_path_id], presaved_pathscores) - - for from_path_id in rukki_paths.getPathIds(): - for to_path_id in rukki_paths.getPathIds(): - if to_path_id == from_path_id: - continue - if self.match_graph.isHomologousPath([rukki_paths.getPathById(from_path_id), rukki_paths.getPathById(to_path_id)], [rukki_paths.getLength(from_path_id), rukki_paths.getLength(to_path_id)]): - continue - for from_dir in ('-', '+'): - for to_dir in ('-', '+'): - or_from_path_id = from_path_id + from_dir - or_to_path_id = to_path_id + to_dir - self.scaffold_graph.add_edge(or_from_path_id, or_to_path_id, weight = scores[from_path_id][to_path_id][from_dir + to_dir], unique_weight = unique_scores[from_path_id][to_path_id][from_dir + to_dir]) - if self.rukki_paths.getLength(from_path_id) >= ScaffoldGraph.MIN_PATH_TO_SCAFFOLD and self.rukki_paths.getLength(from_path_id) >= ScaffoldGraph.MIN_PATH_TO_SCAFFOLD: - self.logger.debug (f"Final not-unique scores {from_path_id} {to_path_id} {scores[from_path_id][to_path_id]}") - self.logger.debug (f"Final unique scores {from_path_id} {to_path_id} {unique_scores[from_path_id][to_path_id]}")''' - + def getConnectionsNodemap(self, connections): + nodemap = {} + for node_pair in connections.keys(): + if not node_pair[0] in nodemap: + nodemap[node_pair[0]] = set() + if not node_pair[1] in nodemap: + nodemap[node_pair[1]] = set() + nodemap[node_pair[0]].add(node_pair[1]) + nodemap[node_pair[1]].add(node_pair[0]) + return nodemap + def isHaploidPath(self, paths, nor_path_id): total_hom = 0 for or_node in paths.getPathById(nor_path_id): @@ -412,14 +397,29 @@ def forbiddenPair(self, from_path_id, to_path_id): return False + def getAnyLinkPaths(self, nor_path_id, path_storage, connection_map): + connected_nodes = set() + for node in path_storage.getPathById(nor_path_id): + nor_node = gf.nor_node(node) + if nor_node in connection_map: + connected_nodes.update(connection_map[nor_node]) + connected_paths = set() + for nor_node in connected_nodes: + connected_paths.update(path_storage.getPathsFromNode(nor_node)) + return connected_paths + + def getScores(self, or_path_id, path_storage, type): res = [] if type == "weight": cur_scores = self.scores connections = self.all_connections + connection_nodemap = self.all_connections_nodemap elif type == "unique_weight": cur_scores = self.unique_scores connections = self.unique_connections + connection_nodemap = self.unique_connections_nodemap + else: self.logger.error(f"Unknown type {type}") return res @@ -432,12 +432,9 @@ def getScores(self, or_path_id, path_storage, type): cur_scores[or_path_id] = {} cur_scores[gf.rc_path_id(or_path_id)] = {} precounted = False - for next_or_path in self.scaffold_graph.nodes(): - #Counting all orientations together so no need to double count - if next_or_path[-1] == "-": - continue - next_nor_path = gf.nor_path_id(next_or_path) - #TODO: optimize homology counting, once per all paths + connected_nor_paths = self.getAnyLinkPaths(nor_path_id, path_storage, connection_nodemap) + + for next_nor_path in connected_nor_paths: if next_nor_path in homologous_paths or next_nor_path == nor_path_id: continue else: @@ -449,9 +446,10 @@ def getScores(self, or_path_id, path_storage, type): or_to_path_id = next_nor_path + to_dir if nor_scores[from_dir + to_dir] > 0: cur_scores[or_from_path_id][or_to_path_id] = nor_scores[from_dir + to_dir] - for next_or_path in self.scaffold_graph.nodes(): - if next_or_path in cur_scores[or_path_id]: - res.append([next_or_path, cur_scores[or_path_id][next_or_path]]) + + for next_or_path in cur_scores[or_path_id].keys(): + res.append([next_or_path, cur_scores[or_path_id][next_or_path]]) + res.sort(key=lambda x: x[1], reverse=True) return res @@ -466,21 +464,8 @@ def findExtension(self, cur_path_id, type): if self.scaffold_graph.nodes[cur_path_id]['telomere'][1]: self.logger.info (f"Stopped at the telomere") return "DONE",0 - ''' - for next_node in self.scaffold_graph.successors(cur_path_id): - #specific hacks to avoid - local_scores.append([next_node, self.scaffold_graph.edges[cur_path_id, next_node][type]]) - local_scores.sort(key=lambda x: x[1], reverse=True) - alt_scores = self.getScores(cur_path_id, self.rukki_paths, type) - - if len(alt_scores) > 0 and alt_scores[0]!= local_scores[0]: - self.logger.warning(f"Difference! local scores {local_scores[0]} alt scores {alt_scores[0]}") - for i in range (0,10): - self.logger.warning(f"Alt scores {i} {alt_scores[i]}") - elif len(alt_scores) == 0 and len(local_scores) > 0: - self.logger.warning(f"Local scores but no alt scores, best extension {local_scores[0]}") - ''' local_scores = self.getScores(cur_path_id, self.rukki_paths, type) + best_ind = -1 second_best_ind = -1 for i in range (0, len(local_scores)): @@ -504,10 +489,6 @@ def findExtension(self, cur_path_id, type): elif len(local_scores) == 1 or (len(local_scores) > 1 and local_scores[second_best_ind][1] == 0): self.logger.info (f"Only one next, {local_scores[best_ind]}") return local_scores[best_ind][0], ScaffoldGraph.CLEAR_MAJORITY*2 - # elif local_scores[best_ind][1] < local_scores[second_best_ind][1] * ScaffoldGraph.CLEAR_MAJORITY: - # self.logger.info (f"Not found next, first {local_scores[best_ind]}, second best {local_scores[second_best_ind]}") - # return "NONE" - else: self.logger.info (f"Really best {local_scores[best_ind]}, second best {local_scores[second_best_ind]}") return local_scores[best_ind][0],local_scores[best_ind][1]/local_scores[second_best_ind][1]