-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic.pl
123 lines (90 loc) · 2.74 KB
/
basic.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
% Cases and structural induction
abs_diff(X, Y, Diff) :-
compare(R, X, Y),
abs_diff(R, X, Y, Diff).
abs_diff(<, X, Y, Diff) :- Diff is Y - X.
abs_diff(>, X, Y, Diff) :- Diff is X - Y.
abs_diff(=, _, _, 0).
my_member(X, [X|_]).
my_member(X, [_|L]) :-
my_member(X, L).
% Inputs, outputs and argument order convention
birthday(byron, date(feb, 4)).
birthday(noelene, date(dec, 25)).
birthday(richard, date(oct, 11)).
birthday(clare, date(sep, 15)).
min(X, Y, X) :- X < Y.
min(X, Y, Y) :- X >= Y.
min_and_max(X, Y, X, Y) :- X < Y.
min_and_max(X, Y, Y, X) :- X >= Y.
% Context Arguments
% Reducing a list of numbers
reduce(List, Result) :-
reduce(List, 0, Result).
reduce([], Result, Result).
reduce([H|T], Partial, Result) :-
NewPartial is Partial + H,
reduce(T, NewPartial, Result).
% Mapping a list of numbers
scale([], _, []).
scale([X|Xs], Multiplier, [Y|Ys]) :-
Y is X * Multiplier,
scale(Xs, Multiplier, Ys).
% Filtering a list of numbers
big_elements(Input, Output) :-
big_elements(Input, 10, Output).
big_elements([], _, []).
big_elements([Num|Nums], Bound, Bigs) :-
Num < Bound,
big_elements(Nums, Bound, Bigs).
big_elements([Num|Nums], Bound, [Num|Bigs]) :-
Num >= Bound,
big_elements(Nums, Bound, Bigs).
% Counting the length of a list
len(List, N) :-
len(List, 0, N).
len([], N, N).
len([_|T], Old, N) :-
New is Old + 1,
len(T, New, N).
% Reversing a list
rev(List, Reverse) :-
rev(List, [], Reverse).
rev([], Reverse, Reverse).
rev([Head|Tail], OutList, Reverse) :-
rev(Tail, [Head|OutList], Reverse).
% Summing positive and negative elements of a list separately
sum_pos_neg(List, Pos, Neg) :-
sum_pos_neg(List, 0, Pos, 0, Neg).
sum_pos_neg([], Pos, Pos, Neg, Neg).
sum_pos_neg([X|Xs], Pos0, Pos, Neg0, Neg) :-
X >= 0,
Pos1 is Pos0 + X,
sum_pos_neg(Xs, Pos1, Pos, Neg0, Neg).
sum_pos_neg([X|Xs], Pos0, Pos, Neg0, Neg) :-
X < 0,
Neg1 is Neg0 + X,
sum_pos_neg(Xs, Pos0, Pos, Neg1, Neg).
% Summing the elements of a list and summing their squares
sum_and_ssq(List, Sum, SSQ) :-
sum_and_ssq(List, 0, Sum, 0, SSQ).
sum_and_ssq([], Sum, Sum, SSQ, SSQ).
sum_and_ssq([X|Xs], Sum0, Sum, SSQ0, SSQ) :-
Sum1 is Sum0 + X,
SSQ1 is SSQ0 + X*X,
sum_and_ssq(Xs, Sum1, Sum, SSQ1, SSQ).
% Predicates to check whether Term is a proper list or a partial one
% Useful in determining the value of partial data structures in Prolog
is_proper_list(Term) :-
classify_list(Term, proper, proper).
is_partial_list(Term) :-
classify_list(Term, proper, partial).
is_list(Term) :-
classify_list(Term, partial, partial).
classify_list(V, _, X) :-
var(V),
!,
X = partial.
classify_list([], X, X).
classify_list([_|T], X0, X) :-
classify_list(T, X0, X).