-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathsplit_train_val.py
67 lines (61 loc) · 3.09 KB
/
split_train_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
from sklearn.model_selection import train_test_split
from argparse import ArgumentParser
'''
Split dataset into train-data and val-data,test-data option --imagepath and --labelpath is the path to your original [image.txt and label.txt],
After split, new train-data will stored in './data/train/[image.txt,label.txt]', val-data will stored in './data/val/[image.txt,label.txt]'
test-data in './data/test/[image.txt,label.txt]'
'''
def split_train_val(args):
imagepath = args.imagepath
labelpath = args.labelpath
assert os.path.exists(imagepath), "{} is not exists!".format(imagepath)
assert os.path.exists(labelpath), "{} is not exists!".format(labelpath)
image = []
label = []
with open(imagepath,'r') as f:
for line in f:
image.append(line.strip())
with open(labelpath,'r') as f:
for line in f:
label.append(line.strip())
#split dataset in train/ test/ val = 7: 2: 1
image_train, image_val, label_train, label_val = train_test_split(image,label,random_state=args.random_state,train_size=args.train_size,test_size=args.val_size)
image_test, image_val, label_test, label_val = train_test_split(image_val,label_val,random_state=args.random_state,train_size=args.train_size,test_size=args.val_size)
if not os.path.exists(os.path.join(args.savedir,'train')):
os.mkdir(os.path.join(args.savedir,'train'))
if not os.path.exists(os.path.join(args.savedir,'val')):
os.mkdir(os.path.join(args.savedir,'val'))
if not os.path.exists(os.path.join(args.savedir,'test')):
os.mkdir(os.path.join(args.savedir,'test'))
#store train data in ./data/train/image.txt
with open(os.path.join(args.savedir,'train/image.txt'),'w') as f:
for image in image_train:
f.write(image+'\n')
with open(os.path.join(args.savedir,'train/label.txt'),'w') as f:
for label in label_train:
f.write(label+'\n')
#store test data in ./data/test/image.txt
with open(os.path.join(args.savedir,'test/image.txt'),'w') as f:
for image in image_test:
f.write(image+'\n')
with open(os.path.join(args.savedir,'test/label.txt'),'w') as f:
for label in label_test:
f.write(label+'\n')
#store val data in ./data/val/image.txt
with open(os.path.join(args.savedir,'val/image.txt'),'w') as f:
for image in image_val:
f.write(image+'\n')
with open(os.path.join(args.savedir,'val/label.txt'),'w') as f:
for label in label_val:
f.write(label+'\n')
print('Done!')
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--savedir', default='./data/')
parser.add_argument('--imagepath', default='./data/image.txt')
parser.add_argument('--labelpath', default='./data/label.txt')
parser.add_argument('--random-state',default=10000)
parser.add_argument('--train-size',default=0.7)
parser.add_argument('--val-size',default=0.3)
split_train_val(parser.parse_args())