-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathIndirectQuickRun.py
475 lines (404 loc) · 21.7 KB
/
IndirectQuickRun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
from mantid.simpleapi import (mtd, GroupWorkspaces, IndirectTwoPeakFit)
from mantid.api import *
from mantid.kernel import *
from mantid import config
import os
class IndirectQuickRun(DataProcessorAlgorithm):
_data_files = None
_instrument_name = None
_analyser = None
_reflection = None
_efixed = None
_spectra_range = None
_elastic_range = None
_inelastic_range = None
_sample_log_name = None
_sample_log_value = None
_msdfit = False
_widthfit = False
_output_ws = None
_scan_ws = None
_ipf_filename = None
_plot = False
_save = False
def category(self):
return 'Workflow\\Inelastic;Inelastic\\Indirect;Workflow\\MIDAS'
def summary(self):
return 'Runs an energy transfer reduction for an inelastic indirect geometry instrument.'
def PyInit(self):
# Input properties
self.declareProperty(StringArrayProperty(name='RunNumbers'),
doc='List of input runs')
# Instrument configuration properties
self.declareProperty(name='Instrument', defaultValue='',
validator=StringListValidator(['IRIS', 'OSIRIS']),
doc='Instrument used during run.')
self.declareProperty(name='Analyser', defaultValue='',
validator=StringListValidator(['graphite', 'mica', 'fmica']),
doc='Analyser bank used during run.')
self.declareProperty(name='Reflection', defaultValue='',
validator=StringListValidator(['002', '004', '006']),
doc='Reflection number for instrument setup during run.')
self.declareProperty(IntArrayProperty(name='SpectraRange', values=[0, 1],
validator=IntArrayMandatoryValidator()),
doc='Comma separated range of spectra number to use.')
self.declareProperty(FloatArrayProperty(name='ElasticRange'),
doc='Range of background to subtract from raw data in time of flight.')
self.declareProperty(FloatArrayProperty(name='InelasticRange'),
doc='Range of background to subtract from raw data in time of flight.')
self.declareProperty(FloatArrayProperty(name='TotalRange'),
doc='Energy range for the total energy component.')
self.declareProperty(name='SampleEnvironmentLogName', defaultValue='sample',
doc='Name of the sample environment log entry')
sampEnvLogVal_type = ['last_value', 'average']
self.declareProperty('SampleEnvironmentLogValue', 'last_value',
StringListValidator(sampEnvLogVal_type),
doc='Value selection of the sample environment log entry')
self.declareProperty(name='MSDFit', defaultValue=False,
doc='Perform an MSDFit, do not use with GroupingMethod as "All"')
self.declareProperty(name='WidthFit', defaultValue=False,
doc='Perform a 2 peak width Fit, do not use with GroupingMethod as "All"')
self.declareProperty(name='Plot', defaultValue=False,
doc='Switch Plot Off/On')
self.declareProperty(name='Save', defaultValue=False,
doc='Switch Save result to nxs file Off/On')
# pylint: disable=too-many-locals
def PyExec(self):
self._setup()
scan_progress = Progress(self, 0.0, 0.05, 3)
scan_progress.report('Running scan')
scan_alg = self.createChildAlgorithm("EnergyWindowScan", 0.05, 0.95)
scan_alg.setProperty('InputFiles', self._data_files)
scan_alg.setProperty('LoadLogFiles', True)
scan_alg.setProperty('CalibrationWorkspace', '')
scan_alg.setProperty('Instrument', self._instrument_name)
scan_alg.setProperty('Analyser', self._analyser)
scan_alg.setProperty('Reflection', self._reflection)
scan_alg.setProperty('SpectraRange', self._spectra_range)
scan_alg.setProperty('ElasticRange', self._elastic_range)
scan_alg.setProperty('InelasticRange', self._inelastic_range)
scan_alg.setProperty('TotalRange', self._total_range)
scan_alg.setProperty('DetailedBalance', Property.EMPTY_DBL)
scan_alg.setProperty('GroupingMethod', 'Individual')
scan_alg.setProperty('SampleEnvironmentLogName', self._sample_log_name)
scan_alg.setProperty('SampleEnvironmentLogValue', self._sample_log_value)
scan_alg.setProperty('MSDFit', self._msdfit)
scan_alg.setProperty('ReducedWorkspace', self._output_ws)
scan_alg.setProperty('ScanWorkspace', self._scan_ws)
scan_alg.execute()
logger.information('OutputWorkspace : %s' % self._output_ws)
logger.information('ScanWorkspace : %s' % self._scan_ws)
if self._widthfit:
result_workspaces = list()
chi_workspaces = list()
temperatures = list()
# Get input workspaces
fit_progress = Progress(self, 0.0, 0.05, 3)
input_workspace_names = mtd[self._output_ws].getNames()
x = mtd[input_workspace_names[0]].readX(0)
xmin = x[0]
xmax = x[len(x) - 1]
for input_ws in input_workspace_names:
red_ws = input_ws[:-3] + 'red'
# Get the sample temperature
temp = self._get_temperature(red_ws)
if temp is not None:
temperatures.append(temp)
else:
# Get the run number
run_no = self._get_InstrRun(input_ws)[1]
run_numbers.append(run_no)
num_hist = mtd[input_ws].getNumberHistograms()
logger.information('Reduced histograms : %i' % num_hist)
result = input_ws[:-3] + 'fit'
func = 'name=Lorentzian,Amplitude=1.0,PeakCentre=0.0,FWHM=0.01'
func += ',constraint=(Amplitude>0.0,FWHM>0.0)'
for idx in range(num_hist):
fit_progress.report('Fitting workspace: %s ; spectrum %i' % (input_ws, idx))
IndirectTwoPeakFit(SampleWorkspace=input_ws,
EnergyMin=xmin,
EnergyMax=xmax,
Minimizer='Levenberg-Marquardt',
MaxIterations=500,
OutputName=result)
result_workspaces.append(result + '_Result')
chi_workspaces.append(result + '_ChiSq')
self._group_ws(chi_workspaces, self._output_ws + '_ChiSq')
logger.information('ChiSq Group Workspace : %s' % self._output_ws + '_ChiSq')
self._group_ws(result_workspaces, self._output_ws + '_Result')
logger.information('Result Group Workspace : %s' % self._output_ws + '_Result')
fit_progress.report('Creating width Group workspace')
width_name = self._output_ws + '_Width1'
for index, width_ws in enumerate(result_workspaces):
if index == 0:
self._extract(width_ws, width_name, 0)
else:
self._extract(width_ws, '__spectrum', 0)
self._append(width_name, '__spectrum', width_name)
numb_temp = len(temperatures)
x_axis_is_temp = len(input_workspace_names) == numb_temp
if x_axis_is_temp:
logger.information('X axis is in temperature')
unit = ('Temperature', 'K')
else:
logger.information('X axis is in run number')
unit = ('Run No', 'last 3 digits')
ax = NumericAxis.create(numb_temp)
for idx in range(numb_temp):
if x_axis_is_temp:
val = float(temperatures[idx])
else:
val = float(run_numbers[idx][-3:])
ax.setValue(idx, val)
mtd[width_name].replaceAxis(1, ax)
mtd[width_name].setYUnitLabel("Temperature")
xdat = list()
ydat = list()
edat = list()
num_hist = mtd[width_name].getNumberHistograms()
for idx in range(num_hist):
x = mtd[width_name].readX(idx)
y = mtd[width_name].readY(idx)
e = mtd[width_name].readE(idx)
if x_axis_is_temp:
xdat.append(float(temperatures[idx]))
else:
xdat.append(float(run_numbers[idx][-3:]))
ydat.append(y[5] / x[5])
edat.append(e[5] / x[5])
diffusion_workspace = self._output_ws + '_Diffusion'
fit_progress.report('Creating diffusion workspace: %s' % diffusion_workspace)
create_alg = self.createChildAlgorithm("CreateWorkspace", enableLogging=False)
create_alg.setProperty("OutputWorkspace", diffusion_workspace)
create_alg.setProperty("DataX", xdat)
create_alg.setProperty("DataY", ydat)
create_alg.setProperty("DataE", edat)
create_alg.setProperty("NSpec", 1)
create_alg.setProperty("YUnitLabel", 'Diffusion')
create_alg.execute()
mtd.addOrReplace(diffusion_workspace, create_alg.getProperty("OutputWorkspace").value)
unitx = mtd[diffusion_workspace].getAxis(0).setUnit("Label")
unitx.setLabel(unit[0], unit[1])
logger.information('Diffusion Workspace : %s' % diffusion_workspace)
if self._plot:
self._plot_result()
if self._save:
self._save_output()
def validateInputs(self):
"""
Validates algorithm properties.
"""
issues = dict()
# Validate the instrument configuration by checking if a parameter file exists
instrument_name = self.getPropertyValue('Instrument')
analyser = self.getPropertyValue('Analyser')
reflection = self.getPropertyValue('Reflection')
ipf_filename = os.path.join(config['instrumentDefinition.directory'],
instrument_name + '_' + analyser + '_' + reflection + '_Parameters.xml')
if not os.path.exists(ipf_filename):
error_message = 'Invalid instrument configuration'
issues['Instrument'] = error_message
issues['Analyser'] = error_message
issues['Reflection'] = error_message
# Validate spectra range
spectra_range = self.getProperty('SpectraRange').value
if len(spectra_range) != 2:
issues['SpectraRange'] = 'Range must contain exactly two items'
elif spectra_range[0] > spectra_range[1]:
issues['SpectraRange'] = 'Range must be in format: lower,upper'
# Validate ranges
elastic_range = self.getProperty('ElasticRange').value
if elastic_range is not None:
if len(elastic_range) != 2:
issues['ElasticRange'] = 'Range must contain exactly two items'
elif elastic_range[0] > elastic_range[1]:
issues['ElasticRange'] = 'Range must be in format: lower,upper'
inelastic_range = self.getProperty('InelasticRange').value
if inelastic_range is not None:
if len(inelastic_range) != 2:
issues['InelasticRange'] = 'Range must contain exactly two items'
elif inelastic_range[0] > inelastic_range[1]:
issues['InelasticRange'] = 'Range must be in format: lower,upper'
total_range = self.getProperty('TotalRange').value
if inelastic_range is not None:
if len(total_range) != 2:
issues['TotalRange'] = 'Range must contain exactly two items'
elif total_range[0] > total_range[1]:
issues['TotalRange'] = 'Range must be in format: lower,upper'
return issues
def _setup(self):
"""
Gets algorithm properties.
"""
# Get properties
self._instrument_name = self.getPropertyValue('Instrument')
runs = self.getProperty('RunNumbers').value
self._data_files = []
self._format_runs(runs)
first_file = self._data_files[0]
last_file = self._data_files[len(self._data_files)-1]
self._analyser = self.getPropertyValue('Analyser')
self._reflection = self.getPropertyValue('Reflection')
self._spectra_range = self.getProperty('SpectraRange').value
self._elastic_range = self.getProperty('ElasticRange').value
self._inelastic_range = self.getProperty('InelasticRange').value
self._total_range = self.getProperty('TotalRange').value
self._sample_log_name = self.getPropertyValue('SampleEnvironmentLogName')
self._sample_log_value = self.getPropertyValue('SampleEnvironmentLogValue')
self._msdfit = self.getProperty('msdFit').value
self._widthfit = self.getProperty('WidthFit').value
self._output_ws = first_file + '-' + last_file + '_scan_red'
self._scan_ws = first_file + '-' + last_file + '_scan'
self._plot = self.getProperty('Plot').value
self._save = self.getProperty('Save').value
# Get the IPF filename
self._ipf_filename = os.path.join(config['instrumentDefinition.directory'],
self._instrument_name + '_' + self._analyser + '_' + self._reflection + '_Parameters.xml')
logger.information('Instrument parameter file: %s' % self._ipf_filename)
def _get_temperature(self, ws_name):
"""
Gets the sample temperature for a given workspace.
@param ws_name Name of workspace
@returns Temperature in Kelvin or None if not found
"""
instr, run_number = self._get_InstrRun(ws_name)
facility = config.getFacility()
pad_num = facility.instrument(instr).zeroPadding(int(run_number))
zero_padding = '0' * (pad_num - len(run_number))
run_name = instr + zero_padding + run_number
log_filename = run_name.upper() + '.log'
run = mtd[ws_name].getRun()
if self._sample_log_name in run:
# Look for temperature in logs in workspace
tmp = run[self._sample_log_name].value
value_action = {'last_value': lambda x: x[len(x) - 1],
'average': lambda x: x.mean()
}
temp = value_action[self._sample_log_value](tmp)
logger.debug('Temperature %d K found for run: %s' % (temp, run_name))
return temp
else:
# Logs not in workspace, try loading from file
logger.information('Log parameter not found in workspace. Searching for log file.')
log_path = FileFinder.getFullPath(log_filename)
if log_path != '':
# Get temperature from log file
LoadLog(Workspace=ws_name, Filename=log_path)
run_logs = mtd[ws_name].getRun()
if self._sample_log_name in run_logs:
tmp = run_logs[self._sample_log_name].value
temp = tmp[len(tmp) - 1]
logger.debug('Temperature %d K found for run: %s' % (temp, run_name))
return temp
else:
logger.warning('Log entry %s for run %s not found' % (self._sample_log_name, run_name))
else:
logger.warning('Log file for run %s not found' % run_name)
# Can't find log file
logger.warning('No temperature found for run: %s' % run_name)
return None
def _get_InstrRun(self, ws_name):
"""
Get the instrument name and run number from a workspace.
@param ws_name - name of the workspace
@return tuple of form (instrument, run number)
"""
run_number = str(mtd[ws_name].getRunNumber())
if run_number == '0':
# Attempt to parse run number off of name
match = re.match(r'([a-zA-Z]+)([0-9]+)', ws_name)
if match:
run_number = match.group(2)
else:
raise RuntimeError("Could not find run number associated with workspace.")
instrument = mtd[ws_name].getInstrument().getName()
if instrument != '':
for facility in config.getFacilities():
try:
instrument = facility.instrument(instrument).filePrefix(int(run_number))
instrument = instrument.lower()
break
except RuntimeError:
continue
return instrument, run_number
def _extract(self, input_ws, output_ws, index):
extract_alg = self.createChildAlgorithm("ExtractSingleSpectrum", enableLogging = False)
extract_alg.setProperty("InputWorkspace", input_ws)
extract_alg.setProperty("WorkspaceIndex", index)
extract_alg.setProperty("OutputWorkspace", output_ws)
extract_alg.execute()
mtd.addOrReplace(output_ws, extract_alg.getProperty("OutputWorkspace").value)
def _append(self, input1_ws, input2_ws, output_ws):
append_alg = self.createChildAlgorithm("AppendSpectra", enableLogging = False)
append_alg.setProperty("InputWorkspace1", input1_ws)
append_alg.setProperty("InputWorkspace2", input2_ws)
append_alg.setProperty("OutputWorkspace", output_ws)
append_alg.execute()
mtd.addOrReplace(output_ws, append_alg.getProperty("OutputWorkspace").value)
def _save_output(self):
from mantid.simpleapi import SaveNexusProcessed
workdir = config['defaultsave.directory']
el_eq1_path = os.path.join(workdir, self._scan_ws + '_el_eq1.nxs')
logger.information('Creating file : %s' % el_eq1_path)
self._save_ws(self._scan_ws + '_el_eq1', el_eq1_path)
el_eq2_path = os.path.join(workdir, self._scan_ws + '_el_eq2.nxs')
logger.information('Creating file : %s' % el_eq2_path)
self._save_ws(self._scan_ws + '_el_eq2', el_eq2_path)
inel_eq1_path = os.path.join(workdir, self._scan_ws + '_inel_eq1.nxs')
logger.information('Creating file : %s' % inel_eq1_path)
self._save_ws(self._scan_ws + '_inel_eq1', inel_eq1_path)
inel_eq2_path = os.path.join(workdir, self._scan_ws + '_inel_eq2.nxs')
logger.information('Creating file : %s' % inel_eq2_path)
self._save_ws(self._scan_ws + '_inel_eq2', inel_eq2_path)
total_eq1_path = os.path.join(workdir, self._scan_ws + '_total_eq1.nxs')
logger.information('Creating file : %s' % total_eq1_path)
self._save_ws(self._scan_ws + '_inel_eq1', total_eq1_path)
inel_eq2_path = os.path.join(workdir, self._scan_ws + '_total_eq2.nxs')
logger.information('Creating file : %s' % _total_eq2)
self._save_ws(self._scan_ws + '_inel_eq2', _total_eq2)
eisf_path = os.path.join(workdir, self._scan_ws + '_eisf.nxs')
logger.information('Creating file : %s' % eisf_path)
self._save_ws(self._scan_ws + '_eisf', eisf_path)
if self._msdfit:
msd_path = os.path.join(workdir, self._scan_ws + '_msd.nxs')
logger.information('Creating file : %s' % msd_path)
self._save_ws(self._scan_ws + '_msd', msd_path)
msd_fit_path = os.path.join(workdir, self._scan_ws + '_msd_fit.nxs')
logger.information('Creating file : %s' % msd_fit_path)
self._save_ws(self._scan_ws + '_msd_fit', msd_fit_path)
def _plot_result(self):
import mantidplot as mp
mp.plotSpectrum(self._scan_ws + '_el_eq1', 0, error_bars=True)
mp.plotSpectrum(self._scan_ws + '_inel_eq1', 0, error_bars=True)
mp.plotSpectrum(self._scan_ws + '_total_eq1', 0, error_bars=True)
mp.plotSpectrum(self._scan_ws + '_el_eq2', 0, error_bars=True)
mp.plotSpectrum(self._scan_ws + '_inel_eq2', 0, error_bars=True)
mp.plotSpectrum(self._scan_ws + '_total_eq2', 0, error_bars=True)
mp.plotSpectrum(self._scan_ws + '_eisf', 0, error_bars=True)
if self._msdfit:
mp.plotSpectrum(self._scan_ws + '_msd', 1, error_bars=True)
if self._widthfit:
mp.plotSpectrum(self._output_ws + '_Diffusion', 0, error_bars=True)
def _format_runs(self, runs):
run_list = []
for run in runs:
if '-' in run:
a, b = run.split('-')
run_list.extend(list(range(int(a), int(b)+1)))
else:
run_list.append(int(run))
for idx in run_list:
self._data_files.append(self._instrument_name.lower() + str(idx))
def _group_ws(self, input_ws, output_ws):
group_alg = self.createChildAlgorithm("GroupWorkspaces", enableLogging=False)
group_alg.setProperty("InputWorkspaces", input_ws)
group_alg.setProperty("OutputWorkspace", output_ws)
group_alg.execute()
mtd.addOrReplace(output_ws, group_alg.getProperty("OutputWorkspace").value)
def _save_ws(self, input_ws, filename):
save_alg = self.createChildAlgorithm("GroupWorkspaces", enableLogging=False)
save_alg.setProperty("InputWorkspace", input_ws)
save_alg.setProperty("Filename", filename)
save_alg.execute()
# Register algorithm with Mantid
AlgorithmFactory.subscribe(IndirectQuickRun)