-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathNNetTest.scala
311 lines (241 loc) · 9.92 KB
/
NNetTest.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
package neurocat
import minitest._
import cats._
import cats.implicits._
import org.nd4j.linalg.factory.Nd4j
import nd4j._
import org.nd4j.linalg.api.ops.impl.transforms.Sigmoid
import spire.std.double._
import shapeless.{HNil, ::}
object NNetTest extends SimpleTestSuite {
test("simple neural layer to parametrised function") {
val weights = Mat.randomD2[Double, 1 x 3](min = 0.0, max = 1.0)
println(weights.show)
val netLayer = NNetLayerBuilder[Mat, Double, 3 x 1, 1 x 1].build(
body = Body.Dense
, activation = Activation.Sigmoid
)
val x = Mat.columnVector[Double, 3](Array(0.0, 1.0, 0.0))
val y = netLayer.activation(netLayer.body(weights)(x))
println(s"x:${x.show} y:${y.show}")
val parafn = NNetLayer2ParaFn(netLayer)
val y2 = parafn(weights :: HNil)(x)
println(s"x:${x.show} y2:${y2.show}")
// dummy test for now
assertEquals(2, 2)
}
test("2-layers neural network to learner conversion (XOR)") {
// 1st layer
// (Matrix constrained by size)
// | (Scala type in the matrix)
// | | (Input neurons size)
// | | | (body neurons size)
// | | | |
// ˅ ˅ ˅ ˅
val layer1 = NNetLayerBuilder[Mat, Double, 2 x 1, 2 x 1].build(
body = Body.Dense
, activation = Activation.Sigmoid
)
// 2nd layer
val layer2 = NNetLayerBuilder[Mat, Double, 2 x 1, 1 x 1].build(
body = Body.Dense
, activation = Activation.Sigmoid
)
// convert layer 1 into parametrised function then into learner
val parafn1 = NNetLayer2ParaFn(layer1)
val learn1 = ParaFn2Learn(parafn1)(0.1, Loss.L2)
// convert layer 2 into parametrised function then into learner
val parafn2 = NNetLayer2ParaFn(layer2)
val learn2 = ParaFn2Learn(parafn2)(0.1, Loss.L2)
// compose both learners into one single learner
val learn = learn1.andThen(learn2)
/* Please remark that type of learn is:
* Params type is the tuple of both layers params
* | (Input neurons size from layer1)
* | | (body neurons size from layer2)
* | | |
* ˅ ˅ ˅
* Learn.Aux[(Mat[Double, 2 x 2], Mat[Double, 1 x 2]), Mat[Double, 2 x 1], Mat[Double, 1 x 1]]
*
* There is a hidden layer 2 x 1 in this learner
*/
// Train this learner
// Input Training Samples
val trainX = Mat.fromArrays[Double, 4 x 2](Array(
Array(0, 0)
, Array(0, 1)
, Array(1, 0)
, Array(1, 1)
))
// body Training Samples
val trainY = Mat.fromArrays[Double, 4 x 1](Array(
Array(0)
, Array(1)
, Array(1)
, Array(0)
))
// layer1 initial weights
val weights1 = Mat.randomD2[Double, 2 x 2](min = 0.0, max = 1.0)
// val weights1 = Mat.fromArrays[Double, 2 x 2](Array(
// Array(1, 1)
// , Array(-1, -1)
// ))
// layer2 initial weights
val weights2 = Mat.randomD2[Double, 1 x 2](min = 0.0, max = 1.0)
// val weights2 = Mat.fromArrays[Double, 1 x 2](Array(
// Array(1, 1)
// ))
// Train
val trainedParams = Mat.train(learn)(weights1 :: weights2 :: HNil, trainX, trainY)
// println(s"trainedParams:${trainedParams.show}")
// Get some estimated from trainedParams
val x = Mat.columnVector[Double, 2](Array(0, 1.0))
val y = learn.implement(trainedParams)(x)
println(s"x:${x.show} y:${y.show}")
val x2 = Mat.columnVector[Double, 2](Array(1, 1))
val y2 = learn.implement(trainedParams)(x2)
println(s"x2:${x2.show} y:${y2.show}")
// val ws = learn.update(trainedParams)(x)(y)
assertEquals(2, 2)
}
test("Very big neuron layers that compiles fast") {
val layer1 = NNetLayerBuilder[Mat, Double, 20000 x 1, 30000 x 1].build(
body = Body.Dense
, activation = Activation.Sigmoid
)
// 2nd layer
val layer2 = NNetLayerBuilder[Mat, Double, 30000 x 1, 100000 x 1].build(
body = Body.Dense
, activation = Activation.Sigmoid
)
// convert layer 1 into parametrised function then into learner
val parafn1 = NNetLayer2ParaFn(layer1)
val learn1 = ParaFn2Learn(parafn1)(0.1, Loss.L2)
// convert layer 2 into parametrised function then into learner
val parafn2 = NNetLayer2ParaFn(layer2)
val learn2 = ParaFn2Learn(parafn2)(0.1, Loss.L2)
// compose both learners into one single learner
val learn = learn1.andThen(learn2)
// val weights1 = Mat.randomD2[Double, 30000 x 20000](min = 0.0, max = 1.0)
// val weights2 = Mat.randomD2[Double, 100000 x 30000](min = 0.0, max = 1.0)
// compute a simple estimation with current params hypothesis
// val x = Mat.randomD2[Double, 20000 x 1](min = 0.0, max = 1.0)
// you need a lot of memory locally or in GPU here ;)
// val y = learn.implement((weights1, weights2))(x)
}
test("2-layers neural network with naive trainer") {
// 1st layer
// (Matrix constrained by size)
// | (Scala type in the matrix)
// | | (Input neurons size)
// | | | (body neurons size)
// | | | |
// ˅ ˅ ˅ ˅
val layer1 = NNetLayerBuilder[Mat, Double, 2 x 1, 2 x 1].build(
body = Body.Dense
, activation = Activation.Sigmoid
)
// 2nd layer
val layer2 = NNetLayerBuilder[Mat, Double, 2 x 1, 1 x 1].build(
body = Body.Dense
, activation = Activation.Sigmoid
)
// convert layer 1 into parametrised function then into learner
val parafn1 = NNetLayer2ParaFn(layer1)
val learn1 = ParaFn2Learn(parafn1)(0.1, Loss.L2)
// convert layer 2 into parametrised function then into learner
val parafn2 = NNetLayer2ParaFn(layer2)
val learn2 = ParaFn2Learn(parafn2)(0.1, Loss.L2)
// compose both learners into one single learner
val learn = learn1.andThen(learn2)
/* Please remark that type of learn is:
* Params type is the tuple of both layers params
* | (Input neurons size from layer1)
* | | (body neurons size from layer2)
* | | |
* ˅ ˅ ˅
* Learn.Aux[(Mat[Double, 2 x 2], Mat[Double, 1 x 2]), Mat[Double, 2 x 1], Mat[Double, 1 x 1]]
*
* There is a hidden layer 2 x 1 in this learner
*/
// Train this learner
// Input Training Samples
val trainX = DataSet[4](Mat.fromArrays[Double, 4 x 2](Array(
Array(0, 0)
, Array(0, 1)
, Array(1, 0)
, Array(1, 1)
)))
// body Training Samples
val trainY = DataSet[4](Mat.fromArrays[Double, 4 x 1](Array(
Array(0)
, Array(1)
, Array(1)
, Array(0)
)))
// layer1 initial weights
val weights1 = Mat.randomD2[Double, 2 x 2](min = 0.0, max = 1.0)
// layer2 initial weights
val weights2 = Mat.randomD2[Double, 1 x 2](min = 0.0, max = 1.0)
// Train
val trainedParams = Learn.Trainer.naive[DataSet].train(learn)(weights1 :: weights2 :: HNil, trainX.zip(trainY))
// println(s"trainedParams:${trainedParams.show}")
// Get some estimated from trainedParams
val x = Mat.columnVector[Double, 2](Array(0, 1.0))
val y = learn.implement(trainedParams)(x)
println(s"x:${x.show} y:${y.show}")
val x2 = Mat.columnVector[Double, 2](Array(1, 1))
val y2 = learn.implement(trainedParams)(x2)
println(s"x2:${x2.show} y:${y2.show}")
// val ws = learn.update(trainedParams)(x)(y)
assertEquals(2, 2)
}
test("2-layers neural network to HList") {
// Train this learner
// Input Training Samples
val trainX = DataSet[4](Mat.fromArrays[Double, 4 x 2](Array(
Array(0, 0)
, Array(0, 1)
, Array(1, 0)
, Array(1, 1)
)))
// body Training Samples
val trainY = DataSet[4](Mat.fromArrays[Double, 4 x 1](Array(
Array(0)
, Array(1)
, Array(1)
, Array(0)
)))
// // layer1 initial weights
val weights1 = Mat.randomD2[Double, 2 x 2](min = 0.0, max = 1.0)
// // layer2 initial weights
val weights2 = Mat.randomD2[Double, 1 x 2](min = 0.0, max = 1.0)
// Build Neural Network from Heterogenous list of type-aligned network layers
// 1st layer
val layer1 = NNetLayerBuilder[Mat, Double, 2 x 1, 2 x 1].build(
body = Body.Dense
, activation = Activation.Sigmoid
)
// 2nd layer
val layer2 = NNetLayerBuilder[Mat, Double, 2 x 1, 1 x 1].build(
body = Body.Dense
, activation = Activation.Sigmoid
)
val net = layer1 :: layer2 :: NNil()
// Converts neural network description into a Supervised Learning Algorithm
// using a learning parameter & L2 loss function
val learner = net.toLearn(0.1, Loss.L2)
// Train learner using very naive trainer & above training DataSets (sizes checked at compile-time)
val trainedParams = Learn.Trainer.naive[DataSet].train(learner)(
weights1 :: weights2 :: HNil
, trainX.zip(trainY)
)
// Get some estimated from trainedParams
val x = Mat.columnVector[Double, 2](Array(0, 1.0))
val y = learner.implement(trainedParams)(x)
println(s"x:${x.show} y:${y.show}")
val x2 = Mat.columnVector[Double, 2](Array(1, 1))
val y2 = learner.implement(trainedParams)(x2)
println(s"x2:${x2.show} y:${y2.show}")
}
}