-
Notifications
You must be signed in to change notification settings - Fork 0
/
project.m
135 lines (132 loc) · 3.08 KB
/
project.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
%Input Image
image= imread('images/21_training.tif');
mask= imread('mask/21_training_mask.gif');
figure;
imshow(image);
title('Input Image');
%%
resized_image= imresize(image, [584 565]);
double_depth_image = im2double(resized_image);
gray_image= rgb2gray(double_depth_image);
gray_image= adapthisteq(gray_image,'numTiles',[8 8],'nBins',512);
figure;
imshow(gray_image);
title('Gray Image');
%%
gray_imag2= rgb2gray(image);
[red, green , ~]= imsplit(image);
if gray_imag2== green
disp('Yes');
else
disp('No');
end
%%
tetha= linspace(0,180,13);
tetha(end)=[];
structuring_element= strel('line',7,tetha(1));
final_opening= imopen(gray_image,structuring_element);
for i= 2:numel(tetha)
structuring_element= strel('line',7,tetha(i));
temporal_opening= imopen(gray_image, structuring_element);
A= final_opening;
A(temporal_opening>A)= temporal_opening(temporal_opening>A);
final_opening= max(final_opening, temporal_opening);
end
%%
smoothed_image= imreconstruct(final_opening,gray_image);
figure;
imshow(smoothed_image);
%%
average_filter= fspecial('average',[9 9]);
smoothed_image2= imfilter(smoothed_image, average_filter);
figure;
imshow(smoothed_image2);
%%
%border detection
final_image= imsubtract(smoothed_image2, smoothed_image);
figure;
imshow(final_image);
final_image= imbinarize(final_image,0.02);
imshow(final_image);
%%
%%
final_image= medfilt2(final_image);
figure;
imshow(final_image);
%%
figure;
final_image= imbinarize(final_image,0.04);
imshow(final_image);
final_image= medfilt2(final_image);
%%
final_image= contraharmonic_filter(final_image,-2,1);
figure;
imshow(final_image);
%%
opened_image= bwareaopen(final_image, 25);
figure;
imshow(opened_image);
se = strel('disk', 2);
closed = imclose(opened_image, se);
figure;
imshow(closed);
%%
figure;
imhist(final_image);
%%
figure;
imshow(imbinarize(final_image,0.02));
figure;
imshow(imbinarize(final_image,0.04));
%%
final_image= imbinarize(final_image,0.02);
% figure;
% imshow(final_image);
opened_image= bwareaopen(final_image, 25);
% figure;
% imshow(opened_image);
se = strel('disk', 2);
closed = imclose(opened_image, se);
figure;
imshow(closed);
%%
final_image= medfilt2(closed);
figure;
imshow(final_image);
%%
imagen_final= contraharmonic_filter(final_image,-3,1);
%%
imshow(gray_image);
figure;
imshow(final_image);
opened_image= bwareaopen(final_image, 25);
se= strel('disk',2);
closed= imclose(final_image, se);
figure;
imshow(closed);
%%
Image_top_transform=0;
for i = 1:numel(tetha)
structuring_element= strel('line',7,tetha(i));
Image_top_transform= Image_top_transform + imtophat(closed, structuring_element);
end
%%
subplot(1,2,1);
imshow(closed);
subplot(1,2,2);
imshow(Image_top_transform);
%%
figure;
imshow(Image_top_transform);
title('Top transformed image');
%%
figure;
imshow(gray_image);
figure;
new_image= medfilt2(Image_top_transform);
imshow(new_image);
%%
Gaussian_filtered_image= imgaussfilt(new_image, 7/4);
figure;
imshow(Gaussian_filtered_image);
title('Gaussian filtered image')