forked from vonclites/squeezenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsqueezenet.py
73 lines (62 loc) · 3.25 KB
/
squeezenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib.framework import add_arg_scope
from tensorflow.contrib.layers.python.layers import utils
slim = tf.contrib.slim
@add_arg_scope
def fire_module(inputs,
squeeze_depth,
expand_depth,
reuse=None,
scope=None,
outputs_collections=None):
with tf.variable_scope(scope, 'fire', [inputs], reuse=reuse) as sc:
with slim.arg_scope([slim.conv2d, slim.max_pool2d],
outputs_collections=None):
net = squeeze(inputs, squeeze_depth)
outputs = expand(net, expand_depth)
return utils.collect_named_outputs(outputs_collections,
sc.original_name_scope, outputs)
def squeeze(inputs, num_outputs):
return slim.conv2d(inputs, num_outputs, [1, 1], stride=1, scope='squeeze')
def expand(inputs, num_outputs):
with tf.variable_scope('expand'):
e1x1 = slim.conv2d(inputs, num_outputs, [1, 1], stride=1, scope='1x1')
e3x3 = slim.conv2d(inputs, num_outputs, [3, 3], scope='3x3')
return tf.concat(3, [e1x1, e3x3])
def inference(images):
with slim.arg_scope(squeezenet_arg_scope()):
with tf.variable_scope('squeezenet', values=[images]) as sc:
end_point_collection = sc.original_name_scope + '_end_points'
with slim.arg_scope([fire_module, slim.conv2d,
slim.max_pool2d, slim.avg_pool2d],
outputs_collections=[end_point_collection]):
net = slim.conv2d(images, 96, [2, 2], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='maxpool1')
net = fire_module(net, 16, 64, scope='fire2')
net = fire_module(net, 16, 64, scope='fire3')
net = fire_module(net, 32, 128, scope='fire4')
net = slim.max_pool2d(net, [2, 2], scope='maxpool4')
net = fire_module(net, 32, 128, scope='fire5')
net = fire_module(net, 48, 192, scope='fire6')
net = fire_module(net, 48, 192, scope='fire7')
net = fire_module(net, 64, 256, scope='fire8')
net = slim.max_pool2d(net, [2, 2], scope='maxpool8')
net = fire_module(net, 64, 256, scope='fire9')
# Reversed avg and conv layers per 'Network in Network'
net = slim.avg_pool2d(net, [4, 4], scope='avgpool10')
net = slim.conv2d(net, 10, [1, 1],
activation_fn=None,
normalizer_fn=None,
scope='conv10')
logits = tf.squeeze(net, [1, 2], name='logits')
logits = utils.collect_named_outputs(end_point_collection,
sc.name + '/logits',
logits)
end_points = utils.convert_collection_to_dict(end_point_collection)
return logits, end_points
def squeezenet_arg_scope():
with slim.arg_scope([slim.conv2d], normalizer_fn=slim.batch_norm) as sc:
return sc