-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdb_object.c
456 lines (328 loc) · 9.65 KB
/
db_object.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#include "base64.h"
#include "db.h"
DbVector *vectorNew(DbMap *map, DbVector *prv) {
DbVector *vec;
DbAddr addr;
addr.bits = allocBlk(map, sizeof(DbVector) + prv->vecMax * sizeof(DbAddr), true);
vec = getObj(map, addr);
vec->vecMax = prv->vecMax;
prv->next.bits = addr.bits;
return vec;
}
uint32_t vectorPush(DbMap *map, DbVector *nxt, DbAddr value) {
uint32_t slot = 0;
DbVector *vec;
while(( vec = nxt )) {
lockLatch(vec->latch);
if( vec->vecLen < vec->vecMax )
break;
if( vec->next.bits )
nxt = getObj(map, vec->next);
else
nxt = vectorNew(map, vec);
slot += vec->vecMax;
unlockLatch(vec->latch);
}
slot += vec->vecMax;
vec->vector[vec->vecLen++] = value;
unlockLatch(vec->latch);
return slot;
}
DbAddr *vectorFind(DbMap *map, DbVector *prv, uint32_t slot) {
uint32_t base = 0;
DbVector *vec;
while(( vec = prv )) {
lockLatch(vec->latch);
if( base + vec->vecMax < slot )
if( vec->next.bits )
prv = getObj(map, vec->next);
else
prv = NULL;
else
break;
base += vec->vecMax;
unlockLatch(vec->latch);
}
slot -= base;
unlockLatch(vec->latch);
assert(slot < vec->vecMax);
if( !prv )
return NULL;
return vec->vector + slot;
}
uint16_t arrayFirst(uint32_t objSize) {
// must at least have room for bit map
if (objSize < ARRAY_size / 8)
objSize = ARRAY_size / 8;
return (uint16_t)(ARRAY_first(objSize));
}
// return payload address for an allocated array idx
void *arrayEntry (DbMap *map, DbAddr *array, uint16_t idx) {
ArrayHdr *hdr;
uint8_t *base;
if (array->addr)
hdr = getObj(map, *array);
else
return NULL;
if(idx % ARRAY_size < ARRAY_first(hdr->objSize))
return NULL;
base = getObj(map, hdr->addr[idx / ARRAY_size]);
base += (uint64_t)hdr->objSize * (idx % ARRAY_size);
return base;
}
// free an allocated array index
void arrayRelease(DbMap *map, DbAddr *array, uint16_t idx) {
ArrayHdr *hdr = getObj(map, *array);
uint16_t slot = idx / ARRAY_size;
uint64_t *inUse;
assert(idx % ARRAY_size >= ARRAY_first(hdr->objSize));
lockLatch(array->latch);
assert(hdr->addr[slot].bits);
inUse = getObj(map, hdr->addr[slot]);
// clear our bit
inUse[idx % ARRAY_size / 64] &= ~(1ULL << (idx % 64));
// set firstx for this level 0 block
if (hdr->addr[slot].firstx > idx % ARRAY_size / 64)
hdr->addr[slot].firstx = idx % ARRAY_size / 64;
if (hdr->level0 > slot)
hdr->level0 = slot;
unlockLatch(array->latch);
}
// return payload address for unallocated, foreign generated element idx
// N.b. ensure the size of both arrays is exactly the same.
void *arrayElement(DbMap *map, DbAddr *array, uint16_t idx, uint32_t size) {
uint64_t *inUse;
uint8_t *base;
ArrayHdr *hdr;
// must at least have room for bit map
if (size < ARRAY_size / 8)
size = ARRAY_size / 8;
assert(idx % ARRAY_size >= ARRAY_first(size));
lockLatch(array->latch);
// allocate the first level of the Array
// and fill it with the first array segment
if (!array->addr)
array->bits = allocBlk(map, sizeof(ArrayHdr), true) | ADDR_MUTEX_SET;
hdr = getObj(map, *array);
hdr->objSize = size;
// fill-in level zero blocks up to the segment for the given idx
while (hdr->maxLvl0 < idx / ARRAY_size + 1) {
hdr->addr[hdr->maxLvl0].bits = allocBlk(map, size * ARRAY_size, true);
inUse = getObj(map, hdr->addr[hdr->maxLvl0]);
*inUse = (1ULL << ARRAY_first(size)) - 1;
hdr->maxLvl0++;
}
inUse = getObj(map, hdr->addr[idx / ARRAY_size]);
base = (uint8_t *)inUse;
inUse += idx % ARRAY_size / 64;
*inUse |= 1ULL << (idx % 64);
base += (uint64_t)size * (idx % ARRAY_size);
unlockLatch(array->latch);
return base;
}
// allocate an array element index
uint16_t arrayAlloc(DbMap *map, DbAddr *array, uint32_t size) {
unsigned long bits[1];
uint16_t seg, slot;
uint64_t *inUse;
ArrayHdr *hdr;
lockLatch(array->latch);
// element payload size must at least hold bit map
// of assigned elements in array's idx zero
if (size < ARRAY_size / 8)
size = ARRAY_size / 8;
// initialize empty array
if (!array->addr)
array->bits = allocBlk(map, sizeof(ArrayHdr), true) | ADDR_MUTEX_SET;
// get the array header
hdr = getObj(map, *array);
// set the array element payload object size
// or check if it matches this array's payload size
if( hdr->objSize == 0 )
hdr->objSize = size;
if (hdr->objSize != size)
db_abort(hdr, "array element payload size must remain constant", 0);
// find a level 0 block that's not full
// and scan it for an empty element
for (slot = hdr->level0; slot < ARRAY_lvl1; slot++) {
if (!hdr->addr[slot].addr) {
hdr->addr[slot].bits = allocBlk(map, size * ARRAY_size, true);
inUse = getObj(map, hdr->addr[slot]);
*inUse = (1ULL << ARRAY_first(size)) - 1;
*inUse |= 1ULL << ARRAY_first(size);
if (hdr->maxLvl0 < slot + 1)
hdr->maxLvl0 = slot + 1;
hdr->level0 = slot;
unlockLatch(array->latch);
return (uint16_t)(ARRAY_first(size) + (uint64_t)slot * ARRAY_size);
}
seg = hdr->addr[slot].firstx;
if (seg == ARRAY_inuse)
continue;
inUse = getObj(map, hdr->addr[slot]);
while (seg < ARRAY_inuse)
if (inUse[seg] < ULLONG_MAX)
break;
else
seg++;
if (seg < ARRAY_inuse) {
# ifdef _WIN32
_BitScanForward64(bits, ~inUse[seg]);
# else
*bits = (__builtin_ffsll (~inUse[seg])) - 1;
# endif
// set our bit
inUse[seg] |= 1ULL << *bits;
if (inUse[seg] < ULLONG_MAX)
hdr->addr[slot].firstx = (uint8_t)seg;
else
hdr->addr[slot].firstx = ARRAY_inuse;
hdr->level0 = slot;
unlockLatch(array->latch);
return (uint16_t)(*bits + slot * ARRAY_size + seg * 64);
}
}
fprintf(stderr, "Array Overflow file: %s\n", map->arenaPath);
unlockLatch(array->latch);
exit(0);
}
// de-duplication
// set mmbrship
uint16_t mmbrSizes[] = { 13, 29, 61, 113, 251, 503, 1021, 2039, 4093, 8191, 16381, 32749, 65521};
// determine set membership
// return hash table entry
uint64_t *findMmbr(DbMmbr *mmbr, uint64_t keyVal, bool add) {
uint64_t *entry = mmbr->table + keyVal % mmbr->max;
uint64_t *limit = mmbr->table + mmbr->max;
uint64_t *first = NULL, item;
while ((item = *entry)) {
if (item == keyVal)
return entry;
if (add && item == ~0LL && !first)
first = entry;
if (++entry == limit)
entry = mmbr->table;
}
return first ? first : entry;
}
// mmbr slot probe enumerators
// only handle first mmbr table
// return forward occupied entries in mmbr table
// call w/mmbr locked
void *allMmbr(DbMmbr *mmbr, uint64_t *entry) {
if (!entry)
entry = mmbr->table - 1;
while (++entry < mmbr->table + mmbr->max)
if (*entry && *entry < ~0ULL)
return entry;
return NULL;
}
// return reverse occupied entries in mmbr table
// call w/mmbr locked
void *revMmbr(DbMmbr *mmbr, uint64_t *entry) {
if (!entry)
entry = mmbr->table + mmbr->max;
while (entry-- > mmbr->table)
if (*entry && *entry < ~0ULL)
return entry;
return NULL;
}
// advance hash table entry to next slot
// call w/mmbr locked
void *nxtMmbr(DbMmbr *mmbr, uint64_t *entry) {
if (++entry < mmbr->table + mmbr->max)
return entry;
// wrap around to first slot
return mmbr->table;
}
// start ptr in first mmbr hash table slot
// call w/mmbr locked
void *getMmbr(DbMmbr *mmbr, uint64_t keyVal) {
return mmbr->table + keyVal % mmbr->max;
}
// initialize new mmbr set
// call w/addr latched
DbMmbr *iniMmbr(DbMap *map, DbAddr *addr, int minSize) {
DbMmbr *first;
int idx;
for (idx = 0; idx < sizeof(mmbrSizes) / sizeof(uint16_t); idx++)
if (minSize < mmbrSizes[idx])
break;
if ((addr->bits = allocBlk(map, mmbrSizes[idx] * sizeof(uint64_t) + sizeof(DbMmbr), true) | ADDR_MUTEX_SET))
first = getObj(map, *addr);
else {
fprintf(stderr, "iniMmbr: out of memory");
exit(0);
}
first->max = mmbrSizes[idx];
first->sizeIdx = idx;
return first;
}
// expand DbMmbr to larger size
DbMmbr *xtnMmbr(DbMap *map, DbAddr *addr, DbMmbr *first) {
uint64_t next = addr->bits, item;
int redo = 0, idx;
DbMmbr *mmbr;
if (first->sizeIdx < sizeof(mmbrSizes) / sizeof(uint16_t))
redo = ++first->sizeIdx;
if (!(addr->bits = allocBlk(map, (uint32_t)mmbrSizes[first->sizeIdx] * sizeof(uint64_t) + sizeof(DbMmbr), true))) {
fprintf(stderr, "xtnMmbr: out of memory");
exit(0);
}
// make a new first mmbr
mmbr = getObj(map, *addr);
mmbr->max = mmbrSizes[first->sizeIdx];
mmbr->next.bits = next;
// transfer items from old to bigger?
if (redo)
for (idx = 0; idx < first->max; idx++)
if ((item = first->table[idx]))
if (item != ~0LL)
*findMmbr(mmbr, item, true) = item, mmbr->cnt++;
return mmbr;
}
// return first available empty slot
// and increment population count
uint64_t *newMmbr(DbMap *map, DbAddr *addr, uint64_t hash) {
DbMmbr *first = getObj(map, *addr);
uint64_t item;
uint16_t idx;
if (3 * first->cnt / 2 > mmbrSizes[first->sizeIdx])
first = xtnMmbr(map, addr, first);
idx = hash % first->max;
first->cnt++;
while ((item = first->table[idx])) {
if (item == ~0LL)
break;
if (++idx == first->max)
idx = 0;
}
return first->table + idx;
}
// set mmbr hash table slot
// call w/addr locked
// ~0LL > keyVal > 0
uint64_t *setMmbr(DbMap *map, DbAddr *addr, uint64_t keyVal, bool add) {
uint64_t *slot, *test;
DbMmbr *mmbr, *first;
// initialize empty mmbr set
if (addr->addr)
first = getObj(map, *addr);
else
first = iniMmbr(map, addr, 3);
// look in the first table
slot = findMmbr(first, keyVal, add);
mmbr = first;
// otherwise, examine the remainingn set tables
if (*slot == 0 || *slot == ~0LL)
while ((mmbr = mmbr->next.bits ? getObj(map, mmbr->next) : NULL))
if (*(test = findMmbr(mmbr, keyVal, false)))
return test;
// table overflow?
if (3 * first->cnt / 2 > mmbrSizes[first->sizeIdx]) {
first = xtnMmbr(map, addr, first);
slot = findMmbr(first, keyVal, true);
}
first->cnt++;
return slot;
}