-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
214 lines (185 loc) · 7.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from pathlib import Path
import configargparse
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping, TQDMProgressBar
from pytorch_lightning.loggers import TensorBoardLogger, WandbLogger
import wandb
from common.cait_models import CaiT
from common.dataset import TMH
from common.models import CNN, MLP
from common.module import CaitModule
def load_cfg():
parser = configargparse.ArgParser(
config_file_parser_class=configargparse.YAMLConfigFileParser
)
parser.add("-c", is_config_file=True, help="config file path")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MODE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
mode_group = parser.add_argument_group(title="Mode options")
mode_group.add_argument("--mode", type=str, default="TRAIN")
mode_group.add_argument("--on_cluster", action="store_true")
mode_group.add_argument("--on_polyaxon", action="store_true")
mode_group.add_argument("--logdir", type=str, default="logs")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TRAINING ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
training_group = parser.add_argument_group(title="Training options")
training_group.add_argument("--gpus", type=int, default=-1)
training_group.add_argument("--early_stopping_metric", type=str, default="val_acc")
training_group.add_argument("--optimizer", type=str, default="Adam")
training_group.add_argument("--learning_rate", type=float, default=1e-5)
training_group.add_argument("--checkpoint", type=str, default="")
training_group.add_argument(
"--no-weighted_loss", dest="weighted_loss", action="store_false"
)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DATALOADER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
dataloader_group = parser.add_argument_group(title="Dataloader options")
dataloader_group.add_argument("--num_workers", type=int, default=0)
dataloader_group.add_argument("--batch_size", type=int, default=16)
dataloader_group.add_argument("--data_root", type=str, default=".")
dataloader_group.add_argument("--num_classes", type=int, default=4)
dataloader_group.add_argument("--dataset_val_percentage", type=float, default=0.1)
dataloader_group.add_argument("--dataset_test_percentage", type=float, default=0.1)
dataloader_group.add_argument("--reload_data", action="store_true")
dataloader_group.add_argument("--balance_data", action="store_true")
dataloader_group.add_argument(
"--no-mean_embedding", dest="mean_embedding", action="store_false"
)
dataloader_group.add_argument("--clip_sequence", type=int, default=3500)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MODEL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
model_group = parser.add_argument_group(title="Model options")
model_group.add_argument("--model", type=str, default="CNN")
model_group.add_argument("--input_dim", type=int, default=25)
model_group.add_argument("--hidden_dims_list", type=str, default="20,10")
model_group.add_argument("--dropout_p", type=float, default=0.3)
model_group.add_argument("--embed_dim", type=int, default=1024)
model_group.add_argument("--num_heads", type=int, default=8)
model_group.add_argument("--depth", type=int, default=24)
model_group.add_argument("--depth_token_only", type=int, default=2)
model_group.add_argument("--mlp_ratio", type=float, default=4.0)
model_group.add_argument("--mlp_ratio_token_only", type=float, default=4.0)
model_group.add_argument("--drop_rate", type=float, default=0.0)
model_group.add_argument("--attn_drop_rate", type=float, default=0.0)
model_group.add_argument("--drop_path_rate", type=float, default=0.0)
model_group.add_argument("--init_scale", type=float, default=1e-5)
model_group.add_argument("--no-qkv_bias", dest="qkv_bias", action="store_false")
# TODO: add options for CNN, MLP, CaiT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PREDICTION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
parser.add_argument("--fasta", type=str, help="path_to_fasta")
parser.add_argument("--emb", type=str, help="path_to_embeddings")
parser.add_argument(
"--output", type=str, help="path_to_output", default="./output.tsv"
)
parser.add_argument(
"--model_type",
type=str,
default="CAIT",
choices=["CNN", "MLP", "CAIT"],
help="Model type. Default CAIT",
)
# pass 1: get all the parameters in the base config
parser.set_defaults(
on_cluster=False,
on_polyaxon=False,
weighted_loss=True,
reload_data=False,
balance_data=False,
mean_embedding=True,
qkv_bias=True,
)
cfg, _ = parser.parse_known_args()
return cfg
def train(cfg):
loggers = []
if cfg.on_polyaxon:
from common.plx_logger import PolyaxonLogger
poly_logger = PolyaxonLogger(cfg)
loggers.append(poly_logger)
cfg.logdir = str(
poly_logger.output_path
/ poly_logger.name
/ f"version_{poly_logger.version}"
)
if cfg.on_cluster:
run = wandb.init(reinit=True, project=f"pp2")
wandb.config.update(cfg)
loggers.append(WandbLogger(save_dir=cfg.logdir))
loggers.append(TensorBoardLogger(save_dir=cfg.logdir))
print(f"Logdir: {cfg.logdir}")
ckpt_dir = Path(cfg.logdir) / "checkpoints"
ckpt_dir.mkdir(parents=True, exist_ok=True)
callbacks = [
ModelCheckpoint(
dirpath=str(ckpt_dir),
filename=cfg.model + "-{epoch}-{val_acc:.2f}",
monitor=cfg.early_stopping_metric,
mode="max",
),
EarlyStopping(
monitor=cfg.early_stopping_metric, mode="max", min_delta=0.01, patience=5
),
TQDMProgressBar(refresh_rate=50),
]
dataset = TMH(cfg=cfg)
print(f"loading model {cfg.model}...")
if cfg.model == "MLP":
assert cfg.mean_embedding
model = MLP(cfg=cfg)
elif cfg.model == "CNN":
assert cfg.mean_embedding
model = CNN(cfg=cfg)
elif "CaiT" in cfg.model:
assert cfg.batch_size == 1
model = CaiT(cfg=cfg)
else:
raise RuntimeError(f"Unsupported model {cfg.model}")
print("loading module...")
module = CaitModule(cfg=cfg, model=model)
trainer = Trainer(
logger=loggers,
callbacks=callbacks,
gpus=cfg.gpus if torch.cuda.is_available() else 0,
)
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"start fitting {cfg.model} to TMH dataset...")
trainer.fit(
module, dataset, ckpt_path=None if cfg.checkpoint == "" else cfg.checkpoint
)
print("start testing...")
trainer.test(module, dataset)
if cfg.on_cluster:
run.finish()
def main():
cfg = load_cfg()
# cfg.model = "MLP"
# train(cfg)
# cfg.model = "CNN"
# train(cfg)
# can't currently train transformers with minibatches
cfg.batch_size = 1
cfg.mean_embedding = True
cfg.model = "CaiT-XS"
cfg.num_heads = 1
cfg.depth = 4
cfg.depth_token_only = 1
train(cfg)
# cfg.model = "CaiT-S"
# cfg.num_heads = 2
# cfg.depth = 12
# cfg.depth_token_only = 1
# train(cfg)
#
# cfg.model = "CaiT-M"
# cfg.num_heads=4
# cfg.depth=24
# cfg.depth_token_only=2
# cfg.clip_sequence = 3000
# train(cfg)
#
# cfg.model = "CaiT-L"
# cfg.num_heads = 8
# cfg.depth = 24
# cfg.depth_token_only = 2
# cfg.clip_sequence = 1500
# train(cfg)
if __name__ == "__main__":
main()