-
Notifications
You must be signed in to change notification settings - Fork 447
/
Copy pathres101_mx_3k.yml
213 lines (191 loc) · 4.73 KB
/
res101_mx_3k.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# --------------------------------------------------------------
# R-FCN-3000@30FPS: Decoupling Classification and Detection
# Licensed under The Apache-2.0 License [see LICENSE for details]
# by Mahyar Najibi, Bharat Singh and Hengduo Li
# --------------------------------------------------------------
---
MXNET_VERSION: "mxnet"
output_path: "./output/chips_resnet101_3k"
symbol: resnet_mx_101_e2e_3k
#gpus: '0,1,2,3,4,5,6,7'
gpus: '0'
CLASS_AGNOSTIC: true
default:
frequent: 100
kvstore: device
network:
pretrained: "./data/pretrained_model/soft"
pretrained_epoch: 0
PIXEL_MEANS:
- 103.939
- 116.779
- 123.68
RPN_FEAT_STRIDE: 16
FIXED_PARAMS:
- conv0
- bn0
- stage1
ANCHOR_RATIOS:
- 0.5
- 1
- 2
ANCHOR_SCALES:
- 4
- 8
- 16
- 24
NUM_ANCHORS: 12
dataset:
NUM_CLASSES: 3130
dataset: imagenet
dataset_path: "./data/imagenet"
image_set: fall11_whole
root_path: "./data"
test_image_set: ILSVRC2013_DET_val
proposal: rpn
TRAIN:
# Whether to use C++ or python code for chip generation
CPP_CHIPS: false
# Whether to extract negative chips during training
USE_NEG_CHIPS: true
# Multi-processing params
NUM_PROCESS: 64
NUM_THREAD: 8
# Whether to train with segmentation mask
WITH_MASK: false
# Training scales(high res scale, medium res scale, smallest size in the pyramid)
SCALES:
- 512.0
# Valid ranges in each scale
VALID_RANGES:
- !!python/tuple [0,-1]
visualize: false
# Path to save the visualization images
visualization_path: 'debug/visualization'
# Number of epochs between each visualization
visualization_freq: 100
lr: 0.015 #0.002 #0.0005
lr_step: '5.33'
warmup: true
fp16: true
warmup_lr: 0.0005 #0.00005
wd: 0.0001
scale: 100.0
warmup_step: 1000 #4000 #1000
begin_epoch: 0
end_epoch: 7 #9
model_prefix: 'rcnn'
# whether flip image
FLIP: true
# whether shuffle image
SHUFFLE: true
# whether use OHEM
ENABLE_OHEM: true
# size of images for each device, 2 for rcnn, 1 for rpn and e2e
BATCH_IMAGES: 16
# e2e changes behavior of anchor loader and metric
END2END: true
# R-CNN
# rcnn rois batch size
BATCH_ROIS: -1
BATCH_ROIS_OHEM: 256
# rcnn rois sampling params
FG_FRACTION: 0.25
FG_THRESH: 0.5
BG_THRESH_HI: 0.5
BG_THRESH_LO: 0.0
# rcnn bounding box regression params
BBOX_REGRESSION_THRESH: 0.5
BBOX_WEIGHTS:
- 1.0
- 1.0
- 1.0
- 1.0
# RPN anchor loader
# rpn anchors batch size
RPN_BATCH_SIZE: 256
# rpn anchors sampling params
RPN_FG_FRACTION: 0.5
RPN_POSITIVE_OVERLAP: 0.5
RPN_NEGATIVE_OVERLAP: 0.4
RPN_CLOBBER_POSITIVES: false
# rpn bounding box regression params
RPN_BBOX_WEIGHTS:
- 1.0
- 1.0
- 1.0
- 1.0
RPN_POSITIVE_WEIGHT: -1.0
# used for end2end training
# RPN proposal
CXX_PROPOSAL: false
RPN_NMS_THRESH: 0.7
RPN_PRE_NMS_TOP_N: 6000
RPN_POST_NMS_TOP_N: 300
RPN_MIN_SIZE: 0
# approximate bounding box regression
BBOX_NORMALIZATION_PRECOMPUTED: true
BBOX_MEANS:
- 0.0
- 0.0
- 0.0
- 0.0
BBOX_STDS:
- 0.1
- 0.1
- 0.2
- 0.2
TEST:
# Maximum number of detections per image
# Set to -1 to disable
MAX_PER_IMAGE: 200
# Whether to do multi-scale inference
SCALES:
- !!python/tuple [512, 512]
# Number of images per gpu for each scale
BATCH_IMAGES:
- 6
# Number of concurrent jobs used for inference
# if greater than 1, the roidb is distributed over
# concurrent jobs to increase throughput
CONCURRENT_JOBS: 3
# Ranges to specify valid proposal length
# in each of the test scale, square area
# would be computed based on the lengths
# to invalidate, -1 means unbounded, use
# -1 everywhere if you want to have all proposals
VALID_RANGES:
- !!python/tuple [0,-1]
# Use rpn to generate proposal
HAS_RPN: true
# RPN proposal
RPN_NMS_THRESH: 0.7
RPN_PRE_NMS_TOP_N: 6000
RPN_POST_NMS_TOP_N: 300
RPN_MIN_SIZE: 0
PROPOSAL_NMS_THRESH: 0.7
PROPOSAL_PRE_NMS_TOP_N: 20000
PROPOSAL_POST_NMS_TOP_N: 2000
PROPOSAL_MIN_SIZE: 0
# RCNN nms
NMS: -1 #0.45
NMS_SIGMA: 0.55
TEST_EPOCH: 7
# VISUALIZATION CONFIG
VISUALIZATION_PATH: './debug/visualization'
# Whether to visualize all intermediate scales
# before aggregation (when doing multi-scale inference)
# If False, only final detections are saved to
# VISUALIZATION_PATH
VISUALIZE_INTERMEDIATE_SCALES: True
# PROPOSAL EXTRACTION FLAGS
# If true only would extract proposals
EXTRACT_PROPOSALS: false
# The folder path to be used for saving proposals
PROPOSAL_SAVE_PATH: 'output/proposals'
# Number of proposals extracted per scale
# SCALES and BATCH_IMAGES above would be used to
# Specify scales and number of images per batch for
# each scale, no valid ranges would be applied for
# aggregating proposals
N_PROPOSAL_PER_SCALE: 300