Spread sheet including Results and related works is available in here.
Dataset is available in here.
- Training: 3D MRI images from
369
patients (Height=240, Width=240, Depth=155)- Images: 4 modalities
- Masks: 4 classes(0, 1, 2, and 4)
- Validation: 3D MRI images from
125
patients (Height=240, Width=240, Depth=155)- Images: 4 modalities
-
Dice Loss
-
Generator Loss
-
Discriminator Loss
- tensorflow
- tensorflow-addons
- tensorflow-cpu
- numpy
- matplotlib
- elasticdeform
- scikit-learn
- scipy
- nibabel
- SimpleITK
Install the requirements using command below:
pip install -r requirements.txt
Use the following command to see the arguments needed for running:
python -m scripts.main -h
For running UNet3D model use this:
python -m scripts.main -bs 4 -ps 128 -a 5 -ne 1 -ef 0.25 -lr 1e-3 -b1 0.9 -ds 100 -np 2 -aug 1 -m unet
For running AttUnet3D model use this:
python -m scripts.main -bs 4 -ps 128 -a 5 -ne 1 -ef 0.25 -lr 1e-3 -b1 0.9 -ds 100 -np 2 -aug 1 -m att_unet
For running GAN model use this:
python -m scripts.main -bs 4 -ps 128 -a 5 -ne 1 -ef 0.25 -lr 1e-3 -b1 0.9 -ds 100 -np 2 -aug 1 -m gan
For running AttGAN model use this:
python -m scripts.main -bs 4 -ps 128 -a 5 -ne 1 -ef 0.25 -lr 1e-3 -b1 0.9 -ds 100 -np 2 -aug 1 -m att_gan
For running UNet3D_DCN model use this:
python -m scripts.main -bs 4 -ps 16 -a 5 -ne 1 -ef 0.25 -lr 1e-3 -b1 0.9 -ds 100 -np 1 -aug 1 -m unet_dc
For running AttUnet3DDCN model use this:
python -m scripts.main -bs 4 -ps 16 -a 5 -ne 5 -ef 0.25 -lr 1e-3 -b1 0.9 -np 1 -aug 1 -m att_unet_dc
For running AttGANDCN model use this:
python -m scripts.main -bs 1 -ps 16 -a 5 -ne 5 -ef 0.25 -lr 1e-3 -b1 0.9 -np 1 -aug 1 -m att_gan_dc