-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathes_vision_single.py
80 lines (66 loc) · 3.71 KB
/
es_vision_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import jax
import chex
import jax.numpy as jnp
from evosax import ParameterReshaper, FitnessShaper, NetworkMapper
from evosax.problems import VisionFitness, FederatedVisionFitness
import utils
from args import get_args
import wandb
from utils import models, evo, helpers
class TaskManager:
def __init__(self, rng: chex.PRNGKey, args):
wandb.run.name = '{}-{}-{} p{} b{} s{} -- {}'.format(args.dataset, args.strategy,
args.dist, args.pop_size,
args.batch_size,
args.seed, wandb.run.id)
wandb.run.save()
self.args = args
self.network = NetworkMapper[args.network_name](**args.network_config)
params = self.network.init(rng, jnp.zeros(args.pholder), rng=rng)
self.param_reshaper = ParameterReshaper(params, n_devices=1)
self.test_param_reshaper = ParameterReshaper(params, n_devices=1)
self.strategy, self.es_params = evo.get_strategy_and_params(args.pop_size,
self.param_reshaper.total_params,
args)
# Set up the dataloader for batch evaluations (may take a sec)
self.train_evaluator = VisionFitness(args.dataset, batch_size=args.batch_size, test=False,
n_devices=1)
self.test_evaluator = VisionFitness(args.dataset, batch_size=10_000, test=True, n_devices=1)
self.train_evaluator.set_apply_fn(self.param_reshaper.vmap_dict, self.network.apply)
self.test_evaluator.set_apply_fn(self.test_param_reshaper.vmap_dict, self.network.apply)
self.fit_shaper = FitnessShaper(centered_rank=True, z_score=True, w_decay=args.w_decay, maximize=True)
def run(self, rng: chex.PRNGKey):
rng, rng_client_init = jax.random.split(rng, 2)
server = self.strategy.initialize(rng_client_init, self.es_params)
for rnd in range(self.args.n_rounds):
rng, rng_eval, rng_ask = jax.random.split(rng, 3)
x, server = self.strategy.ask(rng_ask, server, self.es_params)
reshaped_params = self.param_reshaper.reshape(x)
rng, rng_evals = jax.random.split(rng_eval, 2)
train_loss, train_acc = self.train_evaluator.rollout(rng_evals, reshaped_params)
fit_re = self.fit_shaper.apply(x, train_loss.squeeze())
server = self.strategy.tell(x, fit_re, server, self.es_params)
# Evaluating the server performance
rng, rng_server_ask, rng_server_eval = jax.random.split(rng, 3)
# x, _ = self.strategy.ask(rng_server_ask, server, self.es_params)
server_mean_params = server.mean.reshape(1, -1)
server_reshaped_test_params = self.test_param_reshaper.reshape(server_mean_params)
_, test_acc = self.test_evaluator.rollout(rng_server_eval, server_reshaped_test_params)
wandb.log({
'Round': rnd,
'Global Accuracy': test_acc.squeeze()
})
def run():
print(jax.devices())
args = get_args()
config = helpers.load_config(args.config)
wandb.init(project='evofed-seeds', config=args)
wandb.config.update(config)
args = wandb.config
rng = jax.random.PRNGKey(args.seed)
rng, rng_init, rng_run = jax.random.split(rng, 3)
manager = TaskManager(rng_init, args)
manager.run(rng_run)
if __name__ == '__main__':
# wandb.agent('znfslak7', function=run, project='evofed', count=10)
run()