-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
491 lines (383 loc) · 17.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import os
import numpy as np
import pandas as pd
import torch
import shutil
import torchvision.transforms as transforms
from torch.autograd import Variable
from torchvision.datasets.utils import check_integrity,\
extract_archive, verify_str_arg, download_and_extract_archive
from torchvision.datasets.folder import default_loader
from torch.utils.data import Dataset
from ADP_utils.classesADP import classesADP
from typing import Any
import pickle
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.sum_accuracy = 0
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.val = val
self.sum_accuracy += val
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
# for ADP dataset (also used for BCSS dataset)
def accuracyADP(preds, targets):
acc5 = 0
targets_all = targets.data.int()
acc1 = torch.sum(preds == targets_all)
preds_cpu = preds.cpu()
targets_all_cpu = targets_all.cpu()
for i, pred_sample in enumerate(preds_cpu):
labelv = targets_all_cpu[i]
numerator = torch.sum(np.bitwise_and(pred_sample, labelv))
denominator = torch.sum(np.bitwise_or(pred_sample, labelv))
acc5 += (numerator.double()/denominator.double())
return acc1, acc5
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
# for ADP dataset
def _data_transforms_adp(args):
ADP_MEAN = [0.81233799, 0.64032477, 0.81902153]
ADP_STD = [0.18129702, 0.25731668, 0.16800649]
degrees = 45
horizontal_shift, vertical_shift = 0.1, 0.1
###### train transform
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomAffine(degrees=degrees, translate=(horizontal_shift, vertical_shift)),
transforms.ToTensor(),
transforms.Normalize(ADP_MEAN, ADP_STD)
])
if args.image_size != 272:
train_transform.transforms.insert(0,transforms.Resize((args.image_size, args.image_size),interpolation=transforms.functional.InterpolationMode.BICUBIC))
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
###### valid transform
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(ADP_MEAN, ADP_STD)
])
if args.image_size != 272:
valid_transform.transforms.insert(0,transforms.Resize((args.image_size, args.image_size),interpolation=transforms.functional.InterpolationMode.BICUBIC))
return train_transform, valid_transform
# for BCSS dataset
def _data_transforms_bcss(args):
BCSS_MEAN = [0.7107, 0.4878, 0.6726]
BCSS_STD = [0.1788, 0.2152, 0.1615]
degrees = 45
horizontal_shift, vertical_shift = 0.1, 0.1
###### train transform
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomAffine(degrees=degrees, translate=(horizontal_shift, vertical_shift)),
transforms.ToTensor(),
transforms.Normalize(BCSS_MEAN, BCSS_STD)
])
if args.image_size != 272:
train_transform.transforms.insert(0,transforms.Resize((args.image_size, args.image_size),interpolation=transforms.functional.InterpolationMode.BICUBIC))
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
###### valid transform
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(BCSS_MEAN, BCSS_STD)
])
if args.image_size != 272:
valid_transform.transforms.insert(0,transforms.Resize((args.image_size, args.image_size),interpolation=transforms.functional.InterpolationMode.BICUBIC))
return train_transform, valid_transform
# for BACH dataset
def _data_transforms_bach(args):
BACH_MEAN = [0.6880, 0.5881, 0.8209]
BACH_STD = [0.1632, 0.1841, 0.1175]
degrees = 45
horizontal_shift, vertical_shift = 0.1, 0.1
###### train transform
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomAffine(degrees=degrees, translate=(horizontal_shift, vertical_shift)),
transforms.ToTensor(),
transforms.Normalize(BACH_MEAN, BACH_STD)
])
if args.image_size != 272:
train_transform.transforms.insert(0,transforms.Resize((args.image_size, args.image_size),interpolation=transforms.functional.InterpolationMode.BICUBIC))
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
###### valid transform
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(BACH_MEAN, BACH_STD)
])
if args.image_size != 272:
valid_transform.transforms.insert(0,transforms.Resize((args.image_size, args.image_size),interpolation=transforms.functional.InterpolationMode.BICUBIC))
return train_transform, valid_transform
# for OS dataset
def _data_transforms_os(args):
OS_MEAN = [0.8414, 0.6492, 0.7377]
OS_STD = [0.1379, 0.2508, 0.1979]
degrees = 45
horizontal_shift, vertical_shift = 0.1, 0.1
###### train transform
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomAffine(degrees=degrees, translate=(horizontal_shift, vertical_shift)),
transforms.ToTensor(),
transforms.Normalize(OS_MEAN, OS_STD)
])
if args.image_size != 272:
train_transform.transforms.insert(0,transforms.Resize((args.image_size, args.image_size),interpolation=transforms.functional.InterpolationMode.BICUBIC))
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
###### valid transform
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(OS_MEAN, OS_STD)
])
if args.image_size != 272:
valid_transform.transforms.insert(0,transforms.Resize((args.image_size, args.image_size),interpolation=transforms.functional.InterpolationMode.BICUBIC))
return train_transform, valid_transform
# for ADP dataset
class ADP_dataset(Dataset):
db_name = 'ADP V1.0 Release'
ROI = 'img_res_1um_bicubic'
csv_file = 'ADP_EncodedLabels_Release1_Flat.csv'
def __init__(self,
level,
transform,
root,
split = 'train',
portion = 0.5,
loader = default_loader):
'''
Args:
level (str): a string corresponding to a dict
defined in "ADP_scripts\classes\classesADP.py"
defines the hierarchy to be trained on
transform (callable, optional): A function/transform that takes in an
PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
root (string): Root directory of the ImageNet Dataset.
split (string, optional): The dataset split, supports ``train``,
``valid``, or ``test``.
loader (callable, optional): A function to load an image given its
path. Defaults to default_loader defined in torchvision
Attributes:
self.full_image_paths (list) : a list of image paths
self.class_labels (np.ndarray) : a numpy array of class labels
(num_samples, num_classes)
'''
self.root = root
self.split = verify_str_arg(split, "split", ("train", "valid", "test", "train_search", "valid_search"))
self.transform = transform
self.loader = loader
self.portion = portion
# getting paths:
csv_file_path = os.path.join(self.root, self.db_name, self.csv_file)
ADP_data = pd.read_csv(filepath_or_buffer=csv_file_path, header=0) # reads data and returns a pd.dataframe
# rows are integers starting from 0, columns are strings: e.g. "Patch Names", "E", ...
split_folder = os.path.join(self.root, self.db_name, 'splits')
if self.split == "train":
train_inds = np.load(os.path.join(split_folder, 'train.npy'))
out_df = ADP_data.loc[train_inds, :]
elif self.split == "valid":
valid_inds = np.load(os.path.join(split_folder, 'valid.npy'))
out_df = ADP_data.loc[valid_inds, :]
elif self.split == "test":
test_inds = np.load(os.path.join(split_folder, 'test.npy'))
out_df = ADP_data.loc[test_inds, :]
# for darts search
elif self.split == "train_search":
train_inds = np.load(os.path.join(split_folder, 'train.npy'))
train_search_inds = train_inds[: int(np.floor(self.portion * len(train_inds)))]
out_df = ADP_data.loc[train_search_inds, :]
elif self.split == "valid_search":
train_inds = np.load(os.path.join(split_folder, 'train.npy'))
valid_search_inds = train_inds[int(np.floor(self.portion * len(train_inds))) :]
out_df = ADP_data.loc[valid_search_inds, :]
self.full_image_paths = [os.path.join(self.root, self.db_name, self.ROI, image_name) for image_name in out_df['Patch Names']]
self.class_labels = out_df[classesADP[level]['classesNames']].to_numpy(dtype=np.float32)
def __getitem__(self, idx) -> [Any, torch.Tensor]:
path = self.full_image_paths[idx]
label = self.class_labels[idx]
sample = self.loader(path) # Loading image
if self.transform is not None: # PyTorch implementation
sample = self.transform(sample)
return sample, torch.tensor(label)
def __len__(self) -> int:
return(len(self.full_image_paths))
# for BCSS dataset
class BCSSDataset(Dataset):
db_name = 'BCSS_transformed'
def __init__(self,
root,
split="train",
transform=None,
loader=default_loader,
multi_labelled=True) -> None:
"""
Retrieved from: https://bcsegmentation.grand-challenge.org/
Args:
root (string):
Directory of the transformed dataset, e.g. "/home/BCSS_transformed"
split (string, optional): The dataset split, supports ``train``,
``valid``, or ``test``.
transform (callable, optional): A function/transform that takes in an
PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
loader (callable, optional): A function to load an image given its
path. Defaults to default_loader defined in torchvision
multi_labelled (bool): a boolean controlling whether the output labels are a multilabelled array
or an index corresponding to the single label
"""
self.root = root
self.split = verify_str_arg(split, "split", ("train", "valid", "test"))
self.transform = transform
self.loader = loader
# getting samples from preprocessed pickle file
if multi_labelled:
df = pd.read_csv(os.path.join(self.root, self.db_name, self.split + ".csv"), index_col="image")
else:
df = pd.read_csv(os.path.join(self.root, self.db_name, self.split + "_with_norm_mass.csv"), index_col="image")
self.samples = [(image.replace('\\', '/'), label) for image, label in zip(df.index, df.to_records(index=False))]
if multi_labelled:
self.samples = [(os.path.join(self.root, self.db_name, path), list(label)) for path, label in self.samples]
else:
self.samples = [(os.path.join(self.root, self.db_name, path), np.argmax(list(label))) for path, label in self.samples]
self.class_to_idx = {cls: idx for idx, cls in enumerate(df.columns)}
self.class_labels = df.to_numpy(dtype=np.float32)
def __getitem__(self, idx) -> [Any, torch.Tensor]:
path, label = self.samples[idx]
sample = self.loader(path) # Loading image
if self.transform is not None: # PyTorch implementation
sample = self.transform(sample)
return sample, torch.tensor(label, dtype=torch.int64)
def __len__(self) -> int:
return len(self.samples)
# for BACH dataset
class BACH_transformed(Dataset):
db_name = 'BACH_transformed'
def __init__(self, root, split="train", transform=None, loader=default_loader) -> None:
"""
Args:
root (string):
Directory of the transformed dataset, e.g. /home/BACH_transformed
split (string, optional): The dataset split, supports ``train``,
``valid``, or ``test``.
transform (callable, optional): A function/transform that takes in an
PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
loader (callable, optional): A function to load an image given its
path. Defaults to default_loader defined in torchvision
"""
self.root = root
self.split = verify_str_arg(split, "split", ("train", "valid", "test"))
self.transform = transform
self.loader = loader
# getting samples from preprocessed pickle file
self.samples = pickle.load(open(os.path.join(self.root, self.db_name, self.split+".pickle"), "rb"))
self.samples = [(os.path.join(self.root, self.db_name, path), label) for path, label in self.samples]
self.class_to_idx = pickle.load(open(os.path.join(self.root, self.db_name, "class_to_idx.pickle"), "rb"))
def __getitem__(self, idx) -> [Any, torch.Tensor]:
path, label = self.samples[idx]
sample = self.loader(path) # Loading image
if self.transform is not None: # PyTorch implementation
sample = self.transform(sample)
return sample, torch.tensor(label)
def __len__(self) -> int:
return len(self.samples)
# for OS dataset
class OS_transformed(Dataset):
db_name = 'OS_transformed'
def __init__(self, root, split="train", transform=None, loader=default_loader) -> None:
"""
Args:
root (string):
Directory of the transformed dataset, e.g. /home/OS_transformed
split (string, optional): The dataset split, supports ``train``,
``valid``, or ``test``.
transform (callable, optional): A function/transform that takes in an
PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
loader (callable, optional): A function to load an image given its
path. Defaults to default_loader defined in torchvision
"""
self.root = root
self.split = verify_str_arg(split, "split", ("train", "valid", "test"))
self.transform = transform
self.loader = loader
# getting samples from preprocessed pickle file
self.samples = pickle.load(open(os.path.join(self.root, self.db_name, self.split+".pickle"), "rb"))
self.samples = [(os.path.join(self.root, self.db_name, path), label) for path, label in self.samples]
self.class_to_idx = pickle.load(open(os.path.join(self.root, self.db_name, "class_to_idx.pickle"), "rb"))
def __getitem__(self, idx) -> [Any, torch.Tensor]:
path, label = self.samples[idx]
sample = self.loader(path) # Loading image
if self.transform is not None: # PyTorch implementation
sample = self.transform(sample)
return sample, torch.tensor(label)
def __len__(self) -> int:
return len(self.samples)
def count_parameters_in_MB(model):
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6
def save_checkpoint(state, is_best, save):
filename = os.path.join(save, 'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
best_filename = os.path.join(save, 'model_best.pth.tar')
shutil.copyfile(filename, best_filename)
def save(model, model_path):
torch.save(model.state_dict(), model_path)
def load(model, model_path):
model.load_state_dict(torch.load(model_path))
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1. - drop_prob
mask = Variable(torch.cuda.FloatTensor(x.size(0), 1, 1, 1).bernoulli_(keep_prob))
x.div_(keep_prob)
x.mul_(mask)
return x
def create_exp_dir(path, scripts_to_save=None):
if not os.path.exists(path):
os.mkdir(path)
print('Experiment dir : {}'.format(path))
if scripts_to_save is not None:
os.mkdir(os.path.join(path, 'scripts'))
for script in scripts_to_save:
dst_file = os.path.join(path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)