-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel_smoothing.jl
81 lines (71 loc) · 2.01 KB
/
kernel_smoothing.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
using LinearAlgebra
struct KernelSmoother
K::Function
X::Array
y::Array
end
"""
Epanechnikov quadratic kernel function with parameter λ
"""
function K_λ(λ)
if λ ≤ 0
throw(ArgumentError("λ must be positive"))
end
function K(x0, x)
x̂ = (x - x0) / λ
x̂² = x̂ ⋅ x̂
x̂² ≤ 1 ? 3 / 4 * (1 - x̂²) : 0
end
K
end
"""
Give a kernel smoother based on the training data X, y, and some kernel function
K.
"""
function KernelSmoother(X::Array, y::Array, K::Function=K_λ(1))
KernelSmoother(K, X, y)
end
function predict(ks::KernelSmoother, X_0::Array)
ŷ = Matrix(undef, size(X_0, 1), size(X_0, 2))
for i in 1:size(X_0, 1)
a = sum((ks.K(X_0[i, :], ks.X[j, :]) * ks.y[j, :]) for j in 1:size(ks.X, 1))
b = sum((ks.K(X_0[i, :], ks.X[j, :]) for j in 1:size(ks.X, 1)))
for j in 1:length(a)
ŷ[i, j] = a[j] / b
end
end
ŷ
end
"""
Leave one out cross validation for determining λ in Epanechnikov kernel
"""
function CV_Epanechnikov(λ_list::Vector{Float64}, X::Array, y::Array)
mse_λ = zeros(length(λ_list))
for i in eachindex(λ_list)
mse_cv_sum = 0
for j in 1:size(X, 1)
X_cv = X[1:size(X, 1).!=j, :]
y_cv = y[1:size(y, 1).!=j, :]
ks = KernelSmoother(X_cv, y_cv, K_λ(λ_list[i]))
ŷ_cv = predict(ks, X_cv)
mse_cv_sum += sum((ŷ_cv .- y_cv) .^ 2) / size(y_cv, 1)
end
mse_λ[i] = mse_cv_sum / size(X, 1)
end
mse_λ
end
function EpanechnikovCV(X, y, λ_list)
λ_cv = CV_Epanechnikov(λ_list, X, y)
_, λ_optim_i = findmin(λ_cv)
λ_optim = λ_list[λ_optim_i]
KernelSmoother(X, y, K_λ(λ_optim))
end
# Demo for checking things work properly
include("data.jl")
using Plots
λ_list = Vector(range(0.1, 20, step=0.5))
ks = EpanechnikovCV(X, y, λ_list)
X_0 = Vector(range(0.0, 1.0, length=101))
ŷ = predict(ks, X_0)
scatter(X, y, label="y")
display(plot!(X_0, ŷ[:, 1], label="ŷ"))