Skip to content

Latest commit

 

History

History
23 lines (23 loc) · 1.75 KB

File metadata and controls

23 lines (23 loc) · 1.75 KB

Analysis-of-the-Degradation-Patterns-of-a-Battery

w. Solvay Korea, Ewha Research Team

Data Deonising

tsmoothie_denoising.py: Denoising ("smoothing") the battery retention curves using a LOWESS smoother (Python tsmoothie package)

  • Input: Raw battery data containing columns ‘battery_file_id’, 'DischargeCapacityRetention', 'Cyc_’, etc.
  • Output: Plot visualizations of discharge capacity retention for all battery ids and the csv files of the smoothing results. The original curves are in blue, and the smoothed curves are red. image
  • Output example
    image

Statistical Test

statistical_test.py: Performing Fischer’s exact test (or chi-squared test)

  • Input: profiling data that was put together for descriptive analysis of formed clusters
  • Output: Table images (values of significance highlighted in green) image
  • Output example image

Oversampling

SMOTEN_oversampling.py: Oversampling the clustered data while accounting for component distributions (Python SMOTEN package)

  • Input: Clustering result with meta data containing battery id, cluster, and components
  • Output: 29 plots and 1 csv file image
  • Output example image