-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysisModel.py
421 lines (354 loc) · 17.3 KB
/
analysisModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
from nltk.tokenizer import *
from nltk.probability import *
from random import randint
import string
# XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
class AnalysisModel:
"""A Base class for analyzing documents and producing useful
probability distributions and collocational information about the
documents."""
def __init__(self, corpusToken, SUBTOKENS='SUBTOKENS'):
## Precondition: corpusToken must already be Tokenized... it must be
## a Token that has already been formatted by an NLTK tokenizer
## object.
self._wordPairDist = ConditionalFreqDist()
self._wordDist = FreqDist()
self._SUBTOKENS = SUBTOKENS
self._corpus = corpusToken
self._totalTokens = float(len(self._corpus[self._SUBTOKENS]))
def getWordDist(self):
return self._wordDist
def getWordPairDist(self):
return self._wordPairDist
def _chooseWeighted(self, choices, probabilities):
from random import uniform
n = uniform(0,1)
i = 0
for weight in probabilities:
if n < weight:
return choices[i]
n = n - weight
i = i + 1
print "Error in _chooseWeighted..."
raise RunTimeError
def _chooseUnWeighted(self, choices, frequencies):
max = min(frequencies)
maxPos = 0
i = 0
for freq in frequencies:
if freq > max:
max = freq
maxPos = i
i = i + 1
return choices[maxPos]
def chooseNextWord(self, word1):
raise NotImplementedError
def _runAnalysis(self):
raise NotImplementedError
## def tagText(self, tagger=None):
## from nltk.tagger import *
##
## if tagger == None:
## tagger1 = NthOrderTagger(1)
## tagger2 = UnigramTagger()
## tagger3 = RegexpTagger([(r'^[0-9]+(.[0-9]+)?$', 'cd'), (r'.*', 'nn')])
##
## tagger1.train(self._trainingDoc)
## tagger2.train(self._trainingDoc)
## tagger = BackoffTagger([tagger1, tagger2, tagger3])
##
## tagger.tag(self._corpus)
# XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
# XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
class ProbabilityModel(AnalysisModel):
def __init__(self, corpusToken, SUBTOKENS='SUBTOKENS'):
AnalysisModel.__init__(self, corpusToken, SUBTOKENS)
self._runAnalysis()
def _runAnalysis(self):
prev = None
for word in self._corpus[self._SUBTOKENS]:
self._wordPairDist[prev].inc(word['TEXT'])
prev = word['TEXT']
def chooseNextWord(self, word1):
raise NotImplementedError
# XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
# ----------------------------------------------------------------------
class WeightedProbabilityModel(ProbabilityModel):
def __init__(self, corpusToken, SUBTOKENS='SUBTOKENS'):
ProbabilityModel.__init__(self, corpusToken, SUBTOKENS)
def chooseNextWord(self, word1):
keys = self._wordPairDist[word1].samples()
total = float(reduce(lambda x,y: x+y, \
[self._wordPairDist[word1].count(val) for val in \
[word for word in self._wordPairDist[word1].samples()]]))
probabilities = [self._wordPairDist[word1].count(key)/total for key in keys]
### Test Case ###
if __name__ == "__main__":
assert abs( reduce(lambda x,y: x+y, probabilities) - 1) < .05, \
"Probabilities do not add up to 1."
### End Test ###
return self._chooseWeighted(keys, probabilities)
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
class UnWeightedProbabilityModel(ProbabilityModel):
def __init__(self, corpusToken, SUBTOKENS='SUBTOKENS'):
ProbabilityModel.__init__(self, corpusToken, SUBTOKENS)
def chooseNextWord(self, word1):
keys = self._wordPairDist[word1].samples()
return self._chooseUnWeighted(
keys,
[self._wordPairDist[word1].count(val) for val in keys])
# ----------------------------------------------------------------------
# XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
class MutualInformationModel(AnalysisModel):
def __init__(self, corpusToken, minFreq=10):
AnalysisModel.__init__(self, corpusToken)
self._MIDict = {}
self._minFreq = minFreq
self._runAnalysis()
def _runAnalysis(self):
prev = None
self._wordDist.inc(prev)
visited = {} # use dictionary, as a lookup is O(1)
for word in self._corpus['SUBTOKENS']:
if not visited.get(prev,False):
self._MIDict[prev] = {}
visited[prev] = True
## if prev not in self._MIDict.keys(): # This is O(n)
## self._MIDict[prev] = {}
#self._MIDict[prev][word['TEXT']] = 0 # Initialize dictionary of dictionary
self._wordPairDist[prev].inc(word['TEXT'])
self._wordDist.inc(word['TEXT'])
prev = word['TEXT']
visited = {} # use dictionary, as a lookup is O(1)
subtokens = self._corpus['SUBTOKENS']
pos = 0
while pos < len(self._corpus['SUBTOKENS']) - 1:
if not visited.get((subtokens[pos]['TEXT'],subtokens[pos+1]['TEXT']),False):
f_x = self._wordDist.count(subtokens[pos]['TEXT'])
f_y = self._wordDist.count(subtokens[pos+1]['TEXT'])
f_xy = self._wordPairDist[subtokens[pos]['TEXT']].count( \
subtokens[pos+1]['TEXT'])
self._MIDict[subtokens[pos]['TEXT']][subtokens[pos+1]['TEXT']] = \
self._mutualInformationIndex(f_x,f_y,f_xy)
visited[(subtokens[pos]['TEXT'],subtokens[pos+1]['TEXT'])] = True
pos = pos + 1
##
## for initialWord in self._MIDict.keys():
## for finalWord in self._MIDict[initialWord].keys():
## f_x = self._wordDist.count(initialWord)
## f_y = self._wordDist.count(finalWord)
## f_xy = self._wordPairDist[initialWord].count(finalWord)
## self._MIDict[initialWord][finalWord] = self._mutualInformationIndex(f_x,f_y,f_xy)
def _mutualInformationIndex(self, f_x, f_y, f_xy):
"""Computes the mutual information index for two words, x and y, given
the frequency of x (f_x), the frequency of y (f_y), the frequency
of x directly followed by y (f_xy), and the total number of words
in the analyzed corpus. The higher the index returned from this
function, the greater the likelihood that their co-occurrence is
not coincidental. Returns 0 if either of the individual frequencies
are less than minFreq """
return float(f_x > self._minFreq)*float(f_y > self._minFreq) * \
math.log( (f_xy / self._totalTokens) / \
( (f_x*f_y) / self._totalTokens**2), 2)
def chooseNextWord(self, word1):
raise NotImplementedError
# XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
# ----------------------------------------------------------------------
class WeightedMutualInformationModel(MutualInformationModel):
def __init__(self, corpusToken, minFreq=10):
MutualInformationModel.__init__(self, corpusToken, minFreq)
def chooseNextWord(self, word1):
keys = self._MIDict[word1].keys()
total = float(reduce(lambda x,y: x+y,
[self._MIDict[word1][word2] for word2 in keys]))
if total != 0:
probabilities = [self._MIDict[word1][word2]/total for word2 in keys]
else:
probabilities = [1.0 / len(keys) for i in range(len(keys))]
return self._chooseWeighted(keys, probabilities)
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
class UnWeightedMutualInformationModel(MutualInformationModel):
def __init__(self, corpusToken, minFreq=10):
MutualInformationModel.__init__(self, corpusToken, minFreq)
def chooseNextWord(self, word1):
keys = self._MIDict[word1].keys()
return self._chooseUnWeighted(
keys,
[self._MIDict[word1][word2] for word2 in keys] )
# ----------------------------------------------------------------------
# XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
class TScoreModel(AnalysisModel):
def __init__(self, corpusToken=None, SUBTOKENS='SUBTOKENS'):
AnalysisModel.__init__(self, corpusToken, SUBTOKENS)
self._tScoreDict = {}
self._SUBTOKENS = SUBTOKENS
if corpusToken != None:
self._runAnalysis()
## def _runAnalysis(self):
## prev = None
## self._wordDist.inc(prev)
## for word in self._corpus['SUBTOKENS']:
## if prev not in self._tScoreDict.keys():
## self._tScoreDict[prev] = {}
## self._tScoreDict[prev][word['TEXT']] = 0 # Initialize dictionary of dictionary
## self._wordPairDist[prev].inc(word['TEXT'])
## self._wordDist.inc(word['TEXT'])
## prev = word['TEXT']
##
## for initialWord in self._tScoreDict.keys():
## for finalWord in self._tScoreDict[initialWord].keys():
## f_x = self._wordDist.count(initialWord)
## f_y = self._wordDist.count(finalWord)
## f_xy = self._wordPairDist[initialWord].count(finalWord)
## self._tScoreDict[initialWord][finalWord] = self._tScore(f_x,f_y,f_xy)
def _runAnalysis(self):
prev = None
self._wordDist.inc(prev)
visited = {} # use dictionary, as a lookup is O(1)
for word in self._corpus[self._SUBTOKENS]:
if not visited.get(prev,False):
self._tScoreDict[prev] = {}
visited[prev] = True
self._wordPairDist[prev].inc(word['TEXT'])
self._wordDist.inc(word['TEXT'])
prev = word['TEXT']
visited = {} # use dictionary, as a lookup is O(1)
subtokens = self._corpus[self._SUBTOKENS]
pos = 0
while pos < len(self._corpus[self._SUBTOKENS]) - 1:
if not visited.get((subtokens[pos]['TEXT'],subtokens[pos+1]['TEXT']),False):
f_x = self._wordDist.count(subtokens[pos]['TEXT'])
f_y = self._wordDist.count(subtokens[pos+1]['TEXT'])
f_xy = self._wordPairDist[subtokens[pos]['TEXT']].count( \
subtokens[pos+1]['TEXT'])
self._tScoreDict[subtokens[pos]['TEXT']][subtokens[pos+1]['TEXT']] = \
self._tScore(f_x,f_y,f_xy)
visited[(subtokens[pos]['TEXT'],subtokens[pos+1]['TEXT'])] = True
pos = pos + 1
def _tScore(self, f_x, f_y, f_xy):
return ( f_xy/self._totalTokens - (f_x/self._totalTokens) * (f_y/self._totalTokens)) / \
math.sqrt(f_xy/self._totalTokens)
def chooseNextWord(self, word1):
raise NotImplementedError
# XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
# ----------------------------------------------------------------------
class WeightedTScoreModel(TScoreModel):
def __init__(self, corpusToken, SUBTOKENS='SUBTOKENS'):
TScoreModel.__init__(self, corpusToken, SUBTOKENS)
self._SUBTOKENS = SUBTOKENS
def chooseNextWord(self, word1):
keys = self._tScoreDict[word1].keys()
total = float(reduce(lambda x,y: x+y,
[self._tScoreDict[word1][word2] for word2 in keys]))
probabilities = [self._tScoreDict[word1][word2]/total for word2 in keys]
return self._chooseWeighted(keys, probabilities)
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
class UnWeightedTScoreModel(TScoreModel):
def __init__(self, corpusToken):
TScoreModel.__init__(self, corpusToken)
def chooseNextWord(self, word1):
keys = self._tScoreDict[word1].keys()
return self._chooseUnWeighted(
keys,
[self._tScoreDict[word1][word2] for word2 in keys] )
# ----------------------------------------------------------------------
class WeightedTaggedTScoreModel(WeightedTScoreModel):
def __init__(self, corpusToken, SUBTOKENS='SUBTOKENS'):
WeightedTScoreModel.__init__(self, corpusToken, SUBTOKENS)
self._SUBTOKENS = SUBTOKENS
def chooseNextWord(self, word1):
text = word1[0]
tag = word1[1]
keys = self._tScoreDict[(text,tag)].keys()
total = float(reduce(lambda x,y: x+y,
[self._tScoreDict[(text,tag)][word2] for word2 in keys]))
probabilities = [self._tScoreDict[(text,tag)][word2]/total for word2 in keys]
return self._chooseWeighted(keys, probabilities)
def _runAnalysis(self):
visited = {} # use dictionary, as a lookup is O(1)
prev = self._corpus[self._SUBTOKENS][0]
self._wordDist.inc((prev['TEXT'], prev['TAG']))
self._tScoreDict[(prev['TEXT'], prev['TAG'])] = {}
visited[(prev['TEXT'], prev['TAG'])] = True
for word in self._corpus[self._SUBTOKENS][1:]:
if not visited.get((word['TEXT'], word['TAG']),False):
self._tScoreDict[(word['TEXT'], word['TAG'])] = {}
visited[(word['TEXT'], word['TAG'])] = True
self._wordPairDist[(prev['TEXT'],prev['TAG'])].inc( \
(word['TEXT'], word['TAG']))
self._wordDist.inc((word['TEXT'], word['TAG']))
prev = word
visited = {} # use dictionary, as a lookup is O(1)
subtokens = self._corpus[self._SUBTOKENS]
pos = 0
while pos < len(subtokens) - 1:
text1 = subtokens[pos]['TEXT']
text2 = subtokens[pos+1]['TEXT']
tag1 = subtokens[pos]['TAG']
tag2 = subtokens[pos+1]['TAG']
if not visited.get(((text1, tag1),(text2, tag2)),False):
f_x = self._wordDist.count((text1, tag1))
f_y = self._wordDist.count((text2, tag2))
f_xy = self._wordPairDist[(text1, tag1)].count((text2, tag2))
self._tScoreDict[(text1,tag1)][(text2,tag2)] = self._tScore(f_x,f_y,f_xy)
visited[((text1,tag1),(text2,tag2))] = True
pos = pos + 1
if __name__ == "__main__":
FILE_NAME = "c:\\documents and settings\\mcaldwell\desktop\\alice.txt"
#FILE_NAME = "/home/mcaldwell/capstone/corpora/alice.txt"
TOKENIZER = WhitespaceTokenizer(SUBTOKENS='SUBTOKENS')
TEST_WORD = "alice"
file = open(FILE_NAME)
tokenized = Token(TEXT=string.lower(file.read()))
TOKENIZER.tokenize(tokenized)
file.close()
def WeightedProbabilityTest():
print "Testing WeightedProbabilityModel on '" + TEST_WORD + "'..."
model = WeightedProbabilityModel(tokenized)
for i in range(5):
print model.chooseNextWord(TEST_WORD)
print "Test finished... results reasonable?\n"
def UnWeightedProbabilityTest():
print "Testing UnWeightedProbabilityModel on '" + TEST_WORD + "'..."
model = UnWeightedProbabilityModel(tokenized)
words = []
for i in range(5):
words.append(model.chooseNextWord(TEST_WORD))
assert words[0] == words[1] == words[2] == words[3] == words[4],\
"""UnWeightedProbabilityTest.chooseNextWord() should return
the same result every time. Test failed."""
print words
print "Test passed. Results reasonable?\n"
def WeightedMutualInformationTest():
print "Testing WeightedMutualInformationModel on '" + TEST_WORD + "'..."
model = WeightedMutualInformationModel(tokenized)
for i in range(5):
print model.chooseNextWord(TEST_WORD)
print "Test finished... results reasonable?\n"
def UnWeightedMutualInformationTest():
print "Testing UnWeightedMutualInformationModel on '" + TEST_WORD + "'..."
model = UnWeightedMutualInformationModel(tokenized)
for i in range(5):
print model.chooseNextWord(TEST_WORD)
print "Test finished... results reasonable?\n"
def WeightedTScoreTest():
print "Testing WeightedTScoreModel on '" + TEST_WORD + "'..."
model = WeightedTScoreModel(tokenized)
for i in range(5):
print model.chooseNextWord(TEST_WORD)
print "Test finished... results reasonable?\n"
def UnWeightedTScoreTest():
print "Testing UnWeightedTScoreModel on '" + TEST_WORD + "'..."
model = UnWeightedTScoreModel(tokenized)
for i in range(5):
print model.chooseNextWord(TEST_WORD)
print "Test finished... results reasonable?\n"
WeightedProbabilityTest()
UnWeightedProbabilityTest()
WeightedMutualInformationTest()
UnWeightedMutualInformationTest()
WeightedTScoreTest()
UnWeightedTScoreTest()