-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
152 lines (127 loc) · 5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import json
import os
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from rich import get_console
from rich.table import Table
from omegaconf import OmegaConf
from convofusion.callback import ProgressLogger
from convofusion.config import parse_args
from convofusion.data.get_data import get_datasets
from convofusion.models.get_model import get_model
from convofusion.utils.logger import create_logger
def print_table(title, metrics):
table = Table(title=title)
table.add_column("Metrics", style="cyan", no_wrap=True)
table.add_column("Value", style="magenta")
for key, value in metrics.items():
table.add_row(key, str(value))
console = get_console()
console.print(table, justify="center")
def get_metric_statistics(values, replication_times):
mean = np.mean(values, axis=0)
std = np.std(values, axis=0)
conf_interval = 1.96 * std / np.sqrt(replication_times)
return mean, conf_interval
def main():
# parse options
cfg = parse_args(phase="test") # parse config file
cfg.FOLDER = cfg.TEST.FOLDER
# create logger
logger = create_logger(cfg, phase="test")
output_dir = Path(
os.path.join(cfg.FOLDER, str(cfg.model.model_type), str(cfg.NAME),
"samples_" + cfg.TIME))
output_dir.mkdir(parents=True, exist_ok=True)
logger.info(OmegaConf.to_yaml(cfg))
# set seed
pl.seed_everything(cfg.SEED_VALUE)
# gpu setting
if cfg.ACCELERATOR == "gpu":
# os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
# str(x) for x in cfg.DEVICE)
os.environ["PYTHONWARNINGS"] = "ignore"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# create dataset
datasets = get_datasets(cfg, logger=logger, phase="test")[0]
logger.info("datasets module {} initialized".format("".join(
cfg.TRAIN.DATASETS)))
# create model
model = get_model(cfg, datasets)
logger.info("model {} loaded".format(cfg.model.model_type))
# optimizer
metric_monitor = {
"Train_jf": "recons/text2jfeats/train",
"Val_jf": "recons/text2jfeats/val",
"Train_rf": "recons/text2rfeats/train",
"Val_rf": "recons/text2rfeats/val",
"APE root": "Metrics/APE_root",
"APE mean pose": "Metrics/APE_mean_pose",
"AVE root": "Metrics/AVE_root",
"AVE mean pose": "Metrics/AVE_mean_pose",
}
# callbacks
callbacks = [
# pl.callbacks.RichProgressBar(),
ProgressLogger(metric_monitor=metric_monitor),
]
logger.info("Callbacks initialized")
# trainer
trainer = pl.Trainer(
benchmark=False,
max_epochs=cfg.TRAIN.END_EPOCH,
accelerator=cfg.ACCELERATOR,
devices=list(range(len(cfg.DEVICE))),
default_root_dir=cfg.FOLDER_EXP,
reload_dataloaders_every_n_epochs=1,
log_every_n_steps=1, #cfg.LOGGER.LOG_EVERY_STEPS,
deterministic=False,
detect_anomaly=False,
enable_progress_bar=True,
logger=None,
callbacks=callbacks,
)
# loading state dict
logger.info("Loading checkpoints from {}".format(cfg.TEST.CHECKPOINTS))
state_dict = torch.load(cfg.TEST.CHECKPOINTS,
map_location="cpu")["state_dict"]
model.load_state_dict(state_dict)
test_results = trainer.test(model, datamodule=datasets, verbose=True)
print(test_results)
# all_metrics = {}
# replication_times = cfg.TEST.REPLICATION_TIMES
# # calculate metrics
# for i in range(replication_times):
# metrics_type = ", ".join(cfg.METRIC.TYPE)
# logger.info(f"Evaluating {metrics_type} - Replication {i}")
# metrics = trainer.test(model, datamodule=datasets)[0]
# if "TM2TMetrics" in metrics_type:
# # mm meteics
# logger.info(f"Evaluating MultiModality - Replication {i}")
# datasets.mm_mode(True)
# mm_metrics = trainer.test(model, datamodule=datasets)[0]
# metrics.update(mm_metrics)
# datasets.mm_mode(False)
# for key, item in metrics.items():
# if key not in all_metrics:
# all_metrics[key] = [item]
# else:
# all_metrics[key] += [item]
# # metrics = trainer.validate(model, datamodule=datasets[0])
# all_metrics_new = {}
# for key, item in all_metrics.items():
# mean, conf_interval = get_metric_statistics(np.array(item),
# replication_times)
# all_metrics_new[key + "/mean"] = mean
# all_metrics_new[key + "/conf_interval"] = conf_interval
# print_table(f"Mean Metrics", all_metrics_new)
# all_metrics_new.update(all_metrics)
# # save metrics to file
# metric_file = output_dir.parent / f"metrics_{cfg.TIME}.json"
# with open(metric_file, "w", encoding="utf-8") as f:
# json.dump(all_metrics_new, f, indent=4)
logger.info(f"Testing done") #, the metrics are saved to {str(metric_file)}")
if __name__ == "__main__":
main()