-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconst.py
107 lines (96 loc) · 5.45 KB
/
const.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 09 17:33 2010
This script list all the hyperparameters
It includes args and also the learning rate
@author: li
"""
import argparse
def give_motion_foreground_penalty(args):
if args.model_type == "daml":
print("------I am now training the SToA model DAML-------")
motion_penalty = 0.001
batch_size = 5
shortcut_opt=True
elif args.model_type == "single_branch":
if args.data_set == "avenue":
batch_size = 6
fore_penalty = 0.1
motion_penalty = 0.010
elif args.data_set == "avenue_robust_on_rain":
batch_size = 6
fore_penalty = 0.4
motion_penalty = 0.001
elif args.data_set == "brugge":
batch_size = 3
fore_penalty = 0.4
motion_penalty = 0.001
shortcut_opt=False
elif args.model_type == "multi_branch_z":
if args.data_set == "avenue":
batch_size = 4
motion_penalty = 0.010
fore_penalty = 0.4
elif args.data_set == "avenue_robust_on_rain":
batch_size = 4
fore_penalty = 0.4
motion_penalty = 0.001
shortcut_opt=False
args.batch_size = batch_size
args.shortcut_opt=shortcut_opt
args.fore_penalty = fore_penalty
args.motion_penalty = motion_penalty
return args
def get_args():
parser = argparse.ArgumentParser(description='Multi-branch with sum shortcut')
parser.add_argument('--datadir', type=str, help="the location that saves the data")
parser.add_argument('--expdir', type=str, help="the location that saves the experiments")
parser.add_argument('-ds', '--data_set', type=str, default="avenue", metavar='DATA_SET',
help='dataset')
parser.add_argument('-bs', '--batch_size', type=int, default=4, metavar='BATCH_SIZE',
help='input batch size for training (default: 100)')
parser.add_argument('-ep', '--max_epoch', type=int, default=50, metavar='EPOCHS',
help='maximum number of epochs')
parser.add_argument('--model_type', type=str, help="which model am I using?")
parser.add_argument('-ne', '--num_encode_layer', type=int, default=4, metavar='NUM_ENCODER_LAYER',
help='the number of encoder layers')
parser.add_argument('-nd', '--num_decode_layer', type=int, default=4, metavar='NUM_DECODER_LAYER',
help='the number of decoder layers')
parser.add_argument('-no', '--norm', type=bool, default=False, metavar='NORM',
help='whether the input is normalized')
parser.add_argument('-sc', '--shortcut_connection', type=bool, default=True, metavar='SHORTCUT_CONNECTION',
help='whether I am using shortcut connection')
parser.add_argument('-od', '--output_dim', type=int, default=3, metavar='OUTPUT_DIM',
help='the output dimension')
parser.add_argument('-ts', '--time_step', type=int, default=6, metavar='TIME_STEP',
help='the number of input frames')
parser.add_argument('-in', '--single_interval', type=int, default=2, metavar='SINGLE_INTERVAL',
help='the gap between every two frames')
parser.add_argument('-de', '--delta', type=int, default=6, metavar='DELTA',
help='the gap between last input frame and output frame')
parser.add_argument('-cc', '--concat_option', type=str, default="conc_tr", metavar='CONCAT_OPTION',
help='the concatenation method')
parser.add_argument('-dv', '--darker_value', type=float, default=0.3, metavar='DARKER_VALUE',
help='the darkest degree of the input frame')
parser.add_argument('-dt', '--darker_type', type=str, default="auto_all", metavar='DARKER_TYPE',
help='the darker type, either auto or manu')
parser.add_argument('-ao', '--aug_opt', type=str, default="add_dark", metavar='AUG_OPT',
help='augmentation method, either add_dark or add_snow')
parser.add_argument('-npbg', '--num_pred_layer_for_bg', type=int, default=4, metavar='NUM_PRED_LAYER_FOR_BG',
help='the number of conv layers for predicting ratio for background')
parser.add_argument('-nbg', '--num_bg', type=int, default=2, metavar='NUM_BG',
help='the number of background')
parser.add_argument('-nf', '--num_frame', type=int, default=1, metavar='NUM_FRAME',
help='the number of input frames')
parser.add_argument('-neb', '--num_encoder_block', type=int, default=2, metavar='NUM_ENCODER_BLOCK',
help='the number of encoder blocks')
parser.add_argument('-ps', '--pool_size', type=int, default=2, metavar='POOL_SIZE',
help='the stride for the encoder and decoder')
parser.add_argument('-vs', '--version', type=int, default=1, metavar='VERSION', help="experiment version")
parser.add_argument('--test_opt', type=str, help="what kind of operations do I need at test time?")
parser.add_argument('--test_index_use', type=str, help="which sequence of data that I am going to test?")
parser.add_argument('--rain_type', type=str, help="which rain am I using?")
parser.add_argument('--brightness', type=int, help="which brightness", default=2)
args = parser.parse_args()
return args