forked from ahwkuepper/mcluster
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathstar.f
364 lines (364 loc) · 12.5 KB
/
star.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
***
SUBROUTINE star(kw,mass,mt,tm,tn,tscls,lums,GB,zpars)
*
*
* Stellar luminosity & evolution time.
* ------------------------------------
*
implicit none
*
integer kw
*
real*8 mass,mt,tm,tn,tscls(20),lums(10),GB(10),zpars(20)
real*8 tgb,tbagb,mch,mcmax,mc1,mc2,mcbagb,dx,am
real*8 lambda,tau,mtc,mass0
parameter(mch=1.44d0)
*
real*8 lzamsf,lzahbf,lzhef
real*8 tbgbf,thookf,tHef,themsf,mcgbf,mcagbf,mcheif,mcgbtf
real*8 ltmsf,lbgbf,lHeIf,lHef,lbagbf,lmcgbf
external lzamsf,lzahbf,lzhef
external tbgbf,thookf,tHef,themsf,mcgbf,mcagbf,mcheif,mcgbtf
external ltmsf,lbgbf,lHeIf,lHef,lbagbf,lmcgbf
*
* Computes the characteristic luminosities at different stages (LUMS),
* and various timescales (TSCLS).
* Ref: P.P. Eggleton, M.J. Fitchett & C.A. Tout (1989) Ap.J. 347, 998.
*
* Revised 27th March 1995 by C. A. Tout
* and 24th October 1995 to include metallicity
* and 13th December 1996 to include naked helium stars
*
* Revised 5th April 1997 by J. R. Hurley
* to include Z=0.001 as well as Z=0.02, convective overshooting,
* MS hook and more elaborate CHeB. It now also sets the Giant
* Branch parameters relevant to the mass of the star.
*
* ------------------------------------------------------------
* Times: 1; BGB 2; He ignition 3; He burning
* 4; Giant t(inf1) 5; Giant t(inf2) 6; Giant t(Mx)
* 7; FAGB t(inf1) 8; FAGB t(inf2) 9; FAGB t(Mx)
* 10; SAGB t(inf1) 11; SAGB t(inf2) 12; SAGB t(Mx)
* 13; TP 14; t(Mcmax)
*
* LUMS: 1; ZAMS 2; End MS 3; BGB
* 4; He ignition 5; He burning 6; L(Mx)
* 7; BAGB 8; TP
*
* GB: 1; effective A(H) 2; A(H,He) 3; B
* 4; D 5; p 6; q
* 7; Mx 8; A(He) 9; Mc,BGB
*
* ------------------------------------------------------------
*
*
mass0 = mass
if(mass0.gt.100.d0) mass = 100.d0
*
if(kw.ge.7.and.kw.le.9) goto 90
if(kw.ge.10) goto 95
*
* MS and BGB times
*
tscls(1) = tbgbf(mass)
tm = MAX(zpars(8),thookf(mass))*tscls(1)
*
* Zero- and terminal age main sequence luminosity
*
lums(1) = lzamsf(mass)
lums(2) = ltmsf(mass)
*
* Set the GB parameters
*
GB(1) = MAX(-4.8d0,MIN(-5.7d0+0.8d0*mass,-4.1d0+0.14d0*mass))
GB(1) = 10.d0**GB(1)
GB(2) = 1.27d-05
GB(8) = 8.0d-05
GB(3) = MAX(3.0d+04,500.d0 + 1.75d+04*mass**0.6d0)
if(mass.le.2.0)then
GB(4) = zpars(6)
GB(5) = 6.d0
GB(6) = 3.d0
elseif(mass.lt.2.5)then
dx = zpars(6) - (0.975d0*zpars(6) - 0.18d0*2.5d0)
GB(4) = zpars(6) - dx*(mass - 2.d0)/(0.5d0)
GB(5) = 6.d0 - (mass - 2.d0)/(0.5d0)
GB(6) = 3.d0 - (mass - 2.d0)/(0.5d0)
else
GB(4) = MAX(-1.d0,0.5d0*zpars(6) - 0.06d0*mass)
GB(4) = MAX(GB(4),0.975d0*zpars(6) - 0.18d0*mass)
GB(5) = 5.d0
GB(6) = 2.d0
endif
GB(4) = 10.d0**GB(4)
GB(7) = (GB(3)/GB(4))**(1.d0/(GB(5)-GB(6)))
*
* Change in slope of giant L-Mc relation.
lums(6) = GB(4)*GB(7)**GB(5)
*
* HeI ignition luminosity
lums(4) = lHeIf(mass,zpars(2))
lums(7) = lbagbf(mass,zpars(2))
*
if(mass.lt.0.1d0.and.kw.le.1)then
tscls(2) = 1.1d0*tscls(1)
tscls(3) = 0.1d0*tscls(1)
lums(3) = lbgbf(mass)
goto 96
endif
*
if(mass.le.zpars(3))then
* Base of the giant branch luminosity
lums(3) = lbgbf(mass)
* Set GB timescales
tscls(4) = tscls(1) + (1.d0/((GB(5)-1.d0)*GB(1)*GB(4)))*
& ((GB(4)/lums(3))**((GB(5)-1.d0)/GB(5)))
tscls(6) = tscls(4) - (tscls(4) - tscls(1))*((lums(3)/lums(6))
& **((GB(5)-1.d0)/GB(5)))
tscls(5) = tscls(6) + (1.d0/((GB(6)-1.d0)*GB(1)*GB(3)))*
& ((GB(3)/lums(6))**((GB(6)-1.d0)/GB(6)))
* Set Helium ignition time
if(lums(4).le.lums(6))then
tscls(2) = tscls(4) - (1.d0/((GB(5)-1.d0)*GB(1)*GB(4)))*
& ((GB(4)/lums(4))**((GB(5)-1.d0)/GB(5)))
else
tscls(2) = tscls(5) - (1.d0/((GB(6)-1.d0)*GB(1)*GB(3)))*
& ((GB(3)/lums(4))**((GB(6)-1.d0)/GB(6)))
endif
tgb = tscls(2) - tscls(1)
if(mass.le.zpars(2))then
mc1 = mcgbf(lums(4),GB,lums(6))
mc2 = mcagbf(mass)
lums(5) = lzahbf(mass,mc1,zpars(2))
tscls(3) = tHef(mass,mc1,zpars(2))
else
lums(5) = lHef(mass)*lums(4)
tscls(3) = tHef(mass,1.d0,zpars(2))*tscls(1)
endif
else
* Note that for M>zpars(3) there is no GB as the star goes from
* HG -> CHeB -> AGB. So in effect tscls(1) refers to the time of
* Helium ignition and not the BGB.
tscls(2) = tscls(1)
tscls(3) = tHef(mass,1.d0,zpars(2))*tscls(1)
* This now represents the luminosity at the end of CHeB, ie. BAGB
lums(5) = lums(7)
* We set lums(3) to be the luminosity at the end of the HG
lums(3) = lums(4)
endif
*
* Set the core mass at the BGB.
*
if(mass.le.zpars(2))then
GB(9) = mcgbf(lums(3),GB,lums(6))
elseif(mass.le.zpars(3))then
GB(9) = mcheif(mass,zpars(2),zpars(9))
else
GB(9) = mcheif(mass,zpars(2),zpars(10))
endif
*
* FAGB time parameters
*
tbagb = tscls(2) + tscls(3)
tscls(7) = tbagb + (1.d0/((GB(5)-1.d0)*GB(8)*GB(4)))*
& ((GB(4)/lums(7))**((GB(5)-1.d0)/GB(5)))
tscls(9) = tscls(7) - (tscls(7) - tbagb)*((lums(7)/lums(6))
& **((GB(5)-1.d0)/GB(5)))
tscls(8) = tscls(9) + (1.d0/((GB(6)-1.d0)*GB(8)*GB(3)))*
& ((GB(3)/lums(6))**((GB(6)-1.d0)/GB(6)))
*
* Now to find Ltp and ttp using Mc,He,tp
*
mcbagb = mcagbf(mass)
mc1 = mcbagb
if(mc1.ge.0.8d0.and.mc1.lt.2.25d0)then
* The star undergoes dredge-up at Ltp causing a decrease in Mc,He
mc1 = 0.44d0*mc1 + 0.448d0
endif
lums(8) = lmcgbf(mc1,GB)
if(mc1.le.GB(7))then
tscls(13) = tscls(7) - (1.d0/((GB(5)-1.d0)*GB(8)*GB(4)))*
& (mc1**(1.d0-GB(5)))
else
tscls(13) = tscls(8) - (1.d0/((GB(6)-1.d0)*GB(8)*GB(3)))*
& (mc1**(1.d0-GB(6)))
endif
*
* SAGB time parameters
*
if(mc1.le.GB(7))then
tscls(10) = tscls(13) + (1.d0/((GB(5)-1.d0)*GB(2)*GB(4)))*
& ((GB(4)/lums(8))**((GB(5)-1.d0)/GB(5)))
tscls(12) = tscls(10) - (tscls(10) - tscls(13))*
& ((lums(8)/lums(6))**((GB(5)-1.d0)/GB(5)))
tscls(11) = tscls(12) + (1.d0/((GB(6)-1.d0)*GB(2)*GB(3)))*
& ((GB(3)/lums(6))**((GB(6)-1.d0)/GB(6)))
else
tscls(10) = tscls(7)
tscls(12) = tscls(9)
tscls(11) = tscls(13) + (1.d0/((GB(6)-1.d0)*GB(2)*GB(3)))*
& ((GB(3)/lums(8))**((GB(6)-1.d0)/GB(6)))
endif
*
* Get an idea of when Mc,C = Mc,C,max on the AGB
tau = tscls(2) + tscls(3)
mc2 = mcgbtf(tau,GB(8),GB,tscls(7),tscls(8),tscls(9))
mcmax = MAX(MAX(mch,0.773d0*mcbagb - 0.35d0),1.05d0*mc2)
*
if(mcmax.le.mc1)then
if(mcmax.le.GB(7))then
tscls(14) = tscls(7) - (1.d0/((GB(5)-1.d0)*GB(8)*GB(4)))*
& (mcmax**(1.d0-GB(5)))
else
tscls(14) = tscls(8) - (1.d0/((GB(6)-1.d0)*GB(8)*GB(3)))*
& (mcmax**(1.d0-GB(6)))
endif
else
* Star is on SAGB and we need to increase mcmax if any 3rd
* dredge-up has occurred.
lambda = MIN(0.9d0,0.3d0+0.001d0*mass**5)
mcmax = (mcmax - lambda*mc1)/(1.d0 - lambda)
if(mcmax.le.GB(7))then
tscls(14) = tscls(10) - (1.d0/((GB(5)-1.d0)*GB(2)*GB(4)))*
& (mcmax**(1.d0-GB(5)))
else
tscls(14) = tscls(11) - (1.d0/((GB(6)-1.d0)*GB(2)*GB(3)))*
& (mcmax**(1.d0-GB(6)))
endif
endif
tscls(14) = MAX(tbagb,tscls(14))
if(mass.ge.100.d0)then
tn = tscls(2)
goto 100
endif
*
* Calculate the nuclear timescale - the time of exhausting
* nuclear fuel without further mass loss.
* This means we want to find when Mc = Mt which defines Tn and will
* be used in determining the timestep required. Note that after some
* stars reach Mc = Mt there will be a Naked Helium Star lifetime
* which is also a nuclear burning period but is not included in Tn.
*
if(ABS(mt-mcbagb).lt.1.0d-14.and.kw.lt.5)then
tn = tbagb
else
* Note that the only occurence of Mc being double-valued is for stars
* that have a dredge-up. If Mt = Mc where Mc could be the value taken
* from CHeB or from the AGB we need to check the current stellar type.
if(mt.gt.mcbagb.or.(mt.ge.mc1.and.kw.gt.4))then
if(kw.eq.6)then
lambda = MIN(0.9d0,0.3d0+0.001d0*mass**5)
mc1 = (mt - lambda*mc1)/(1.d0 - lambda)
else
mc1 = mt
endif
if(mc1.le.GB(7))then
tn = tscls(10) - (1.d0/((GB(5)-1.d0)*GB(2)*GB(4)))*
& (mc1**(1.d0-GB(5)))
else
tn = tscls(11) - (1.d0/((GB(6)-1.d0)*GB(2)*GB(3)))*
& (mc1**(1.d0-GB(6)))
endif
else
if(mass.gt.zpars(3))then
mc1 = mcheif(mass,zpars(2),zpars(10))
if(mt.le.mc1)then
tn = tscls(2)
else
tn = tscls(2) + tscls(3)*((mt - mc1)/(mcbagb - mc1))
endif
elseif(mass.le.zpars(2))then
mc1 = mcgbf(lums(3),GB,lums(6))
mc2 = mcgbf(lums(4),GB,lums(6))
if(mt.le.mc1)then
tn = tscls(1)
elseif(mt.le.mc2)then
if(mt.le.GB(7))then
tn = tscls(4) - (1.d0/((GB(5)-1.d0)*GB(1)*GB(4)))*
& (mt**(1.d0-GB(5)))
else
tn = tscls(5) - (1.d0/((GB(6)-1.d0)*GB(1)*GB(3)))*
& (mt**(1.d0-GB(6)))
endif
else
tn = tscls(2) + tscls(3)*((mt - mc2)/(mcbagb - mc2))
endif
else
mc1 = mcheif(mass,zpars(2),zpars(9))
mc2 = mcheif(mass,zpars(2),zpars(10))
if(mt.le.mc1)then
tn = tscls(1)
elseif(mt.le.mc2)then
tn = tscls(1) + tgb*((mt - mc1)/(mc2 - mc1))
else
tn = tscls(2) + tscls(3)*((mt - mc2)/(mcbagb - mc2))
endif
endif
endif
endif
tn = MIN(tn,tscls(14))
*
goto 100
*
90 continue
*
* Calculate Helium star Main Sequence lifetime.
*
tm = themsf(mass)
tscls(1) = tm
*
* Zero- and terminal age Helium star main sequence luminosity
*
lums(1) = lzhef(mass)
am = MAX(0.d0,0.85d0-0.08d0*mass)
lums(2) = lums(1)*(1.d0+0.45d0+am)
*
* Set the Helium star GB parameters
*
GB(8) = 8.0d-05
GB(3) = 4.1d+04
GB(4) = 5.5d+04/(1.d0+0.4d0*mass**4)
GB(5) = 5.d0
GB(6) = 3.d0
GB(7) = (GB(3)/GB(4))**(1.d0/(GB(5)-GB(6)))
* Change in slope of giant L-Mc relation.
lums(6) = GB(4)*GB(7)**GB(5)
*
*** Set Helium star GB timescales
*
mc1 = mcgbf(lums(2),GB,lums(6))
tscls(4) = tm + (1.d0/((GB(5)-1.d0)*GB(8)*GB(4)))*
& mc1**(1.d0-GB(5))
tscls(6) = tscls(4) - (tscls(4) - tm)*((GB(7)/mc1)
& **(1.d0-GB(5)))
tscls(5) = tscls(6) + (1.d0/((GB(6)-1.d0)*GB(8)*GB(3)))*
& GB(7)**(1.d0-GB(6))
*
* Get an idea of when Mc = MIN(Mt,Mc,C,max) on the GB
mtc = MIN(mt,1.45d0*mt-0.31d0)
if(mtc.le.0.d0) mtc = mt
mcmax = MIN(mtc,MAX(mch,0.773d0*mass-0.35d0))
if(mcmax.le.GB(7))then
tscls(14) = tscls(4) - (1.d0/((GB(5)-1.d0)*GB(8)*GB(4)))*
& (mcmax**(1.d0-GB(5)))
else
tscls(14) = tscls(5) - (1.d0/((GB(6)-1.d0)*GB(8)*GB(3)))*
& (mcmax**(1.d0-GB(6)))
endif
tscls(14) = MAX(tscls(14),tm)
tn = tscls(14)
*
goto 100
*
95 continue
tm = 1.0d+10
tscls(1) = tm
96 continue
tn = 1.0d+10
*
100 continue
mass = mass0
*
return
end
***