-
Notifications
You must be signed in to change notification settings - Fork 1
/
data_process_cnssnn_doc.py
198 lines (171 loc) · 7.06 KB
/
data_process_cnssnn_doc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import numpy as np
from gensim.models import KeyedVectors
from gensim.models.doc2vec import Doc2VecKeyedVectors
CWD = os.getcwd()
WORDVEC = os.path.join(CWD, "wordvectors.kv")
DOCVEC = os.path.join(CWD, "docvectors.kv")
CORPUS_TRAIN = os.path.join(CWD, "corpus_train_id.txt")
CORPUS_TEST = os.path.join(CWD, "corpus_test_id.txt")
DIMENSION = 100
POS_DIMENSION = 5
FIXED_WORD_LENGTH = 60
TRAIN_RADIO = 0.7
entityvec_key = []
entityvec_value = np.load('entity2vec_value.npy')
with open("entity2vec_key.txt", "r", encoding="utf8") as f:
for line in f:
entityvec_key.append(line.strip())
def get_doc_vec(entity_name):
if entity_name in docvec:
return docvec[entity_name]
else:
return np.zeros(docvec["毛泽东"].shape)
def get_entity_vec(entity_name):
try:
idx = entityvec_key.index(entity_name)
return entityvec_value[idx]
except ValueError:
return np.zeros(entityvec_value[0].shape)
wordvec = KeyedVectors.load(WORDVEC, mmap='r')
docvec = KeyedVectors.load(DOCVEC, mmap='r')
PLACEHOLDER = np.zeros(DIMENSION)
POS_VECTOR = np.random.random((FIXED_WORD_LENGTH * 2, POS_DIMENSION))
for corpus, save_filename in ((CORPUS_TRAIN, "data_train_cnssnn_id_doc.npy"),
(CORPUS_TEST, "data_test_cnssnn_id_doc.npy")):
output_idx = []
output_entity_pos = []
output_relative_pos = []
output_sentence = []
output_relation = []
output_en1_vec = []
output_en2_vec = []
output_en1_doc = []
output_en2_doc = []
with open(corpus, "r", encoding="utf8") as f:
for line in f:
content = line.strip().split()
idx = int(content[0])
entity_a = content[1]
entity_b = content[2]
relation = int(content[3])
sentence = content[4:]
sentence_vector = []
entity_pos = []
relative_pos = []
entity_a_pos_list = [] # 取实体a与实体b最接近的位置
entity_b_pos_list = []
entity_a_pos = -1
entity_b_pos = -1
for i in range(len(sentence)):
if sentence[i] == entity_a:
entity_a_pos_list.append(i)
# entity_a_pos = i
if sentence[i] == entity_b:
entity_b_pos_list.append(i)
# entity_b_pos = i
if sentence[i] not in wordvec:
word_vector = PLACEHOLDER
else:
word_vector = wordvec[sentence[i]]
sentence_vector.append(word_vector)
d_pos = FIXED_WORD_LENGTH
for i in entity_a_pos_list:
for j in entity_b_pos_list:
if abs(i - j) < d_pos:
d_pos = abs(i - j)
entity_a_pos = i
entity_b_pos = j
exception_flag = False
if entity_a_pos == -1 or entity_b_pos == -1:
print(
"entity not found: (%s, %d) (%s, %d) @%s" % (
entity_a, entity_a_pos, entity_b, entity_b_pos, sentence))
exception_flag = True
if entity_a_pos < entity_b_pos:
entity_pos.append([entity_a_pos, entity_b_pos])
elif entity_a_pos > entity_b_pos:
entity_pos.append([entity_b_pos, entity_a_pos])
else:
print(
"entity equal: (%s, %d) (%s, %d) @%s" % (entity_a, entity_a_pos, entity_b, entity_b_pos, sentence))
exception_flag = True
# exit(1)
if exception_flag:
# if relation == -1:
# continue
exit(1)
for i in range(len(sentence)):
relative_vector_entity_a = POS_VECTOR[i - entity_a_pos, :]
relative_vector_entity_b = POS_VECTOR[i - entity_b_pos, :]
pos_vec = np.concatenate((relative_vector_entity_a, relative_vector_entity_b))
relative_pos.append(pos_vec)
if len(sentence_vector) < FIXED_WORD_LENGTH:
for i in range(FIXED_WORD_LENGTH - len(sentence_vector)):
sentence_vector.append(PLACEHOLDER)
pos_vec = np.concatenate((POS_VECTOR[FIXED_WORD_LENGTH, :], POS_VECTOR[FIXED_WORD_LENGTH, :]))
relative_pos.append(pos_vec)
output_idx.append(idx)
output_sentence.append(sentence_vector)
output_relation.append(relation)
output_entity_pos.append(entity_pos)
output_relative_pos.append(relative_pos)
output_en1_vec.append(get_entity_vec(entity_a))
output_en2_vec.append(get_entity_vec(entity_b))
output_en1_doc.append(get_doc_vec(entity_a))
output_en2_doc.append(get_doc_vec(entity_b))
print("length of output_sentence: %d" % len(output_sentence))
np_idx = np.array(output_idx, dtype=int)
np_sentence = np.array(output_sentence, dtype=float)
np_relation = np.array(output_relation, dtype=int)
np_entity_pos = np.array(output_entity_pos, dtype=int)
np_relative_pos = np.array(output_relative_pos, dtype=float)
np_en1_vec = np.array(output_en1_vec, dtype=float)
np_en2_vec = np.array(output_en2_vec, dtype=float)
np_en1_doc = np.array(output_en1_doc, dtype=float)
np_en2_doc = np.array(output_en2_doc, dtype=float)
print(np_sentence.shape)
print(np_relative_pos.shape)
print(np_entity_pos.shape)
print(np_en1_vec.shape)
print(np_en2_vec.shape)
print(np_en1_doc.shape)
print(np_en2_doc.shape)
np_entity_edge_vec = np.concatenate((np_en1_vec, np_en2_vec), axis=1)
np_entity_doc = np.concatenate((np_en1_doc,
np_en2_doc), axis=1)
print(np_entity_doc.shape)
np_sentence_matrix = np.concatenate((np_sentence, np_relative_pos), axis=2)
print(np_sentence_matrix.shape)
sentence_vec = np_sentence_matrix.reshape(np_sentence_matrix.shape[0],
(DIMENSION + 2 * POS_DIMENSION) * FIXED_WORD_LENGTH)
entity_pos_vec = np_entity_pos.reshape(np_entity_pos.shape[0], 2)
# relation + entity position + sentence_vec
conc = np.concatenate(
(np.expand_dims(np_relation, axis=1),
np.expand_dims(np_idx, axis=1),
entity_pos_vec,
np_entity_doc,
sentence_vec,
np_entity_edge_vec,
),
axis=1)
print(conc.shape)
tag_1 = conc[conc[:, 0] == 1]
tag_2 = conc[conc[:, 0] == 2]
tag_3 = conc[conc[:, 0] == 3]
tag_4 = conc[conc[:, 0] == 4]
tag_5 = conc[conc[:, 0] == 5]
tag_6 = conc[conc[:, 0] == 6]
tag_7 = conc[conc[:, 0] == 7]
tag_8 = conc[conc[:, 0] == 8]
tag_9 = conc[conc[:, 0] == 9]
tag_10 = conc[conc[:, 0] == 10]
tag_0 = conc[conc[:, 0] == -1]
tag_0[:, 0] = 0
filter = np.concatenate((
tag_1, tag_2, tag_3, tag_4, tag_5, tag_6, tag_7,
tag_8, tag_9, tag_10, tag_0), axis=0)
print(filter.shape)
np.random.shuffle(filter)
np.save(save_filename, filter)