-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain.py
146 lines (131 loc) · 5.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# coding=utf-8
# Copyright 2022 Gen Luo. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from torch.optim import AdamW
from avalanche.evaluation.metrics.accuracy import Accuracy
from tqdm import tqdm
from timm.models import create_model
from timm.scheduler.cosine_lr import CosineLRScheduler
from argparse import ArgumentParser
from dataset import *
from utils import *
from repadapter import set_RepAdapter
from torch import nn
from timm.data import Mixup
from timm.loss import SoftTargetCrossEntropy
def train(config, model, dl, opt, scheduler, epoch,mixup_fn=None,criterion=nn.CrossEntropyLoss()):
model.train()
model = model.cuda()
for ep in tqdm(range(epoch)):
model.train()
model = model.cuda()
# pbar = tqdm(dl)
for i, batch in enumerate(dl):
x, y = batch[0].cuda(), batch[1].cuda()
if mixup_fn is not None:
x,y=mixup_fn(x,y)
out = model(x)
loss = criterion(out, y)
opt.zero_grad()
loss.backward()
opt.step()
if scheduler is not None:
scheduler.step(ep)
if ep % 10 == 9:
acc = test(model, test_dl)
if acc > config['best_acc']:
config['best_acc'] = acc
save(config['method'], config['name'], model, acc, ep)
model = model.cpu()
return model
@torch.no_grad()
def test(model, dl):
model.eval()
acc = Accuracy()
#pbar = tqdm(dl)
model = model.cuda()
for batch in dl: # pbar:
x, y = batch[0].cuda(), batch[1].cuda()
out = model(x).data
acc.update(out.argmax(dim=1).view(-1), y, 0)
return acc.result()[0]
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--wd', type=float, default=1e-4)
parser.add_argument('--model', type=str, default='vit_base_patch16_224_in21k', choices=['vit_base_patch16_224_in21k','swin_base_patch4_window7_224_in22k','convnext_base_22k_224']) #swin_tiny_patch4_window7_224
parser.add_argument('--dataset', type=str, default='cifar')
parser.add_argument('--method', type=str, default='repblock',choices=['repattn','repblock'])
parser.add_argument('--scale', type=float, default=0)
parser.add_argument('--dim', type=int, default=8)
parser.add_argument('--few-shot', action='store_true')
parser.add_argument('--shots', type=int, default=1)
args = parser.parse_args()
print(args)
set_seed(args.seed)
config = get_config(args.method, args.dataset,args.few_shot)
#mkdir for logs and models
if not os.path.exists('./logs'):
os.mkdir('./logs')
if not os.path.exists('./models/%s'%(args.method)):
os.makedirs('./models/%s'%(args.method))
if 'vit' in args.model:
model = create_model(args.model, drop_path_rate=0.1,checkpoint_path='./ViT-B_16.npz')
elif 'swin' in args.model:
model = create_model(args.model, drop_path_rate=0.1,pretrained=True)
elif 'conv' in args.model:
model = create_model(args.model, drop_path_rate=0.1,pretrained=True)
else:
assert NotImplementedError
model.cuda()
throughput(model)
train_dl, test_dl = get_data(args.dataset,few_shot=args.few_shot)
set_RepAdapter(model, args.method, dim=args.dim, s=config['scale'] if args.scale==0 else args.scale, args=args)
model.cuda()
throughput(model)
if hasattr(model,'blocks'):
print(model.blocks[0])
elif hasattr(model,'layers'):
print(model.layers[0])
elif hasattr(model,'stages'):
print(model.stages[0])
else:
assert NotImplementedError
trainable = []
model.reset_classifier(config['class_num'])
config['best_acc'] = 0
config['method'] = args.method
total=0
for n, p in model.named_parameters():
if 'adapter' in n or 'head' in n:
trainable.append(p)
total+=p.nelement()
else:
p.requires_grad = False
print(' + Number of trainable params: %.2fK' % (total / 1e3)) # 每一百万为一个单位
opt = AdamW(trainable, lr=args.lr, weight_decay=args.wd)
scheduler = CosineLRScheduler(opt, t_initial=100,
warmup_t=10, lr_min=1e-5, warmup_lr_init=1e-6, cycle_decay=0.1)
if args.few_shot:
mixup_fn=Mixup(
mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
prob=1.0, switch_prob=0.5, mode='batch',
label_smoothing=0.1, num_classes=config['class_num'])
criterion = SoftTargetCrossEntropy()
else:
mixup_fn=None
criterion = torch.nn.CrossEntropyLoss()
model = train(config, model, train_dl, opt, scheduler, epoch=100,mixup_fn=mixup_fn,criterion=criterion)
print(config['best_acc'])