-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
72 lines (65 loc) · 2.23 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from flask import Flask, render_template, request
import numpy as np
from tensorflow.keras.models import load_model
from ocr import *
import os
model=load_model("mindlock-model.h5")
app=Flask(__name__)
@app.route("/")
def index():
return render_template("index.html")
@app.route("/submit",methods=['POST'])
def submit():
l=[]
for i in range(1,10):
for j in range(1,10):
k=request.form[f"cell_{i}{j}"]
if k == "":
l.append(0)
else:
l.append(int(k))
isempty=1
for i in l:
if i!=0:
isempty=0
break
if isempty==1:
return render_template("index.html",message="All cells cannot be empty!")
else:
print(l)
lnp=np.array(l).reshape(9,9)
ln=list(model.predict(lnp.reshape(1,9,9,1)).argmax(-1).squeeze()+1)
return render_template("solution.html", ans=ln)
@app.route("/uploadview")
def uploadview():
return render_template('upload.html')
@app.route("/upload",methods=["POST"])
def upload():
uploaded_file=request.files["image"]
if uploaded_file.filename!="" and uploaded_file:
uploaded_file.save("sudoku_image.jpg")
classes=np.arange(0,10)
model_new=load_model("model-OCR.h5")
input_size=48
board,location= find_board(cv2.imread("sudoku_image.jpg"))
gray=cv2.cvtColor(board, cv2.COLOR_BGR2GRAY)
rois=split_boxes(gray)
rois=np.array(rois).reshape(-1,input_size,input_size,1)
prediction=model_new.predict(rois)
predicted_numbers=[]
for i in prediction:
index=np.argmax(i)
predicted_number=classes[index]
predicted_numbers.append(predicted_number)
board_num=np.array(predicted_numbers).astype('uint8').reshape(9,9).tolist()
for k in range(9):
for j in range(9):
if board_num[k][j]==0:
board_num[k][j]=''
else:
board_num[k][j]=str(board_num[k][j])
file_path='sudoku_image.jpg'
if os.path.exists(file_path):
os.remove(file_path)
return render_template('index.html',board=board_num)
return render_template('upload.html',message="No file selected")