-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscover_results2.0.py
223 lines (198 loc) · 7.69 KB
/
discover_results2.0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#Discover
import os, sys
import glob
import csv
import operator
from numpy import mean
import subprocess
from Bio import SeqIO
import itertools
#extract gene with coverage >80% from abricate output and return two lists:
#1) geni_ED: list of gene with information of coverage (lenght), % identity and coverage
#2) list_geni: list of found gene
def extract_abricate(csv_abricate):
#reading the configuration file to extract minimum coverage and perc identity values to filter abricate results
with open("../../conf.txt", "r") as csvfile:
read_csv = list(csv.reader(csvfile, delimiter="\t"))
abricate_v=[]
for line in read_csv:
if line[0]=="Abricate":
if line[2]==line[3]:
abricate_v.append(line[2])
else:
abricate_v.append(line[3])
geni_ED=[]
for line in csv_abricate[1:]:
if float(line[9])>=float(abricate_v[0]) and float(line[10])>=float(abricate_v[1]):
in_line=[]
in_line.append(line[5])
in_line.append(float(line[9]))
in_line.append(float(line[10]))
in_line.append(float(line[1].split('_')[-1]))
geni_ED.append(in_line)
return geni_ED
#order genes by coverage, identity and collect the mean coverage. Return the list of best gene and the mean K-mer scaffold coverage
def select_best_abricate (gene_to_select, signal):
ED_best_gene=[]
if signal=="virulotyper":
genes=[line[0].split("_")[0].split("-")[0] for line in gene_to_select]
else:
genes=[line[0].split("_")[0] for line in gene_to_select]
for geni in genes:
list_gene=[]
for line in gene_to_select:
if line[0].find(geni)!=-1:
list_gene.append(line)
list_gene_sorted=sorted(list_gene, key=operator.itemgetter(1, 2, 3), reverse=True)
ED_best_gene.append(list_gene_sorted[0])
return ED_best_gene
#list of Virulence gene
list_gene_fine=[]
fasta_sequences = SeqIO.parse(open("../discover/data/virulence_ecoli.fsa"),'fasta')
for fasta in fasta_sequences:
gene_vir= str(fasta.id).split("_")[0].split("-")[0]
if gene_vir not in list_gene_fine:
list_gene_fine.append(gene_vir)
#Loci from chewBBACA allelecall
loci=list(csv.reader(open("../discover/chewBBACA_db/results_alleles_example.tsv"),delimiter="\t"))[0]
#Table creation
entries = os.listdir('./')
if 'Tab_results.txt' not in entries:
tab1=open('Tab_results.txt', 'w')
prima_riga = 'Sample' + '\tAvg Scaffold coverage' + '\tBurst size' + '\tMLST' + '\tadk' + '\tfumC' + '\tgyrB' + '\ticd' + '\tmdh' + '\tpurA' + '\trecA'+'\tSTX subtype' + '\tSerotype O' + '\tSerotype H\t'
tab1.write(prima_riga)
[tab1.write(gene + '\t') for gene in list_gene_fine[:-1]]
tab1.write(list_gene_fine[-1]+'\n')
else:
tab1 = open('Tab_results.txt', 'a')
if 'Tab_AMR.txt' not in entries:
tab2 = open('Tab_AMR.txt', 'w')
tab2.write('Sample' + '\t' + 'AMR genes' + "\n")
else:
tab2 = open('Tab_AMR.txt', 'a')
if 'Tab_cgMLST.txt' not in entries:
tab3 = open('Tab_cgMLST.txt', 'w')
# extract info for MLST gene results
tab3.write("Sample\t")
[tab3.write(gene + '\t') for gene in loci]
tab3.write("\n")
else:
tab3 = open('Tab_cgMLST.txt', 'a')
if 'Contamination_sheet.txt' not in entries:
tab4 = open('Contamination_sheet.txt', 'w')
tab4.write('Sample' + '\t' + 'Species'+ '\t' + 'Gene' + '\t' + 'PC' + '\t' + 'NDC' + '\n')
else:
tab4 = open('Contamination_sheet.txt', 'a')
#gathering results from discover analysis
for file in glob.glob("*_disc/"):
namesample = file.split('_')[0]
os.chdir(file)
row_sample=namesample+'\t'
print(namesample)
#coverage
fasta_sequences = SeqIO.parse(open(namesample+"_scaffolds"),'fasta')
cov=[]
for fasta in fasta_sequences:
cov.append(float(str(fasta.id).split("_")[-1]))
mean_contigs=str(round(mean(cov)))
#VIRULOTYPER RESULTS: read the file virulotyper_results.txt
with open('virulotyper_results.txt') as file1:
read_csv = list(csv.reader(file1, delimiter="\t"))
#empty list from list_gene_fine
find_gene=['0']*len(list_gene_fine)
if len(read_csv)>1:
#exctract best virulence gene
geni_abricate=extract_abricate(read_csv)
if geni_abricate:
best_geni_abricate=select_best_abricate(geni_abricate, "virulotyper")
for x in best_geni_abricate:
gen = x[0].split('_')[0].split("-")[0]
for c in list_gene_fine:
if gen==c:
find_gene[list_gene_fine.index(c)]=x[0]
#MLST
mlst=''
species=''
with open('mlst_results.txt') as file2:
read_csv = list(csv.reader(file2, delimiter="\t"))
line = read_csv[0]
mlst+='ST'+line[2]+'; '
st_allele=line[3]+"\t"+line[4]+"\t"+line[5]+"\t"+line[6]+"\t"+line[7]+"\t"+line[8]+"\t"+line[9]
for line in read_csv:
species+=line[1]+'; '
if os.path.isfile("./chewbbca_results.tsv") == True:
#extract EXC+INF from chewBBACA
with open('chewbbca_results.tsv') as file3:
read_csv = list(csv.reader(file3, delimiter="\t"))
if len(read_csv)>1:
exc=str(int(read_csv[1][1])+int(read_csv[1][2]))
else:
exc="ND"
# SHIGATOXIN TYPER
file4 = open("shigatoxin_results.txt")
file4_lines=file4.readlines()
list_of_stx = ''
if file4_lines[1].find("No match found")==-1:
list_of_stx += file4_lines[1]
else:
list_of_stx+="ND "
file4.close()
# SEROTYPER- STX O&H
file5 = open("serotyper_results.txt")
file5_lines=file5.readlines()
sero_o = file5_lines[1].strip('\n').split(': ')[1]
sero_h = file5_lines[2].strip('\n').split(': ')[1]
file5.close()
#add info to sample row and create tab1 Tab_results.txt
row_sample=namesample+'\t'
row_sample+=mean_contigs+'\t'
row_sample+=exc+'\t'
row_sample+=mlst[:-2]+'\t'
row_sample+=st_allele+'\t'
row_sample += list_of_stx + '\t'
row_sample += sero_o + '\t'
row_sample +=sero_h + '\t'
tab1.write(row_sample)
[tab1.write(gene + '\t') for gene in find_gene]
tab1.write('\n')
#extract info for AMR results
with open('amr_abricate_results.txt') as file6:
read_csv = list(csv.reader(file6, delimiter="\t"))
tab2.write(namesample + ' :' + '\t')
if len(read_csv)>1:
geni_amr_abricate=extract_abricate(read_csv)
if geni_amr_abricate:
best_geniAmr_abricate=select_best_abricate(geni_amr_abricate, "amr")
#mean_gene=extract_geniAmr_abricate[1]
[tab2.write(gene[0] + "; ") for gene in best_geniAmr_abricate]
tab2.write('\n')
else:
tab2.write(' ND' + "\n")
else:
tab2.write(' ND' + "\n")
#extract info for cgMLST gene results
if os.path.isfile("results_alleles.tsv") == True:
tab3.write(namesample + '\t')
with open('results_alleles.tsv') as file7:
read_csv = list(csv.reader(file7, delimiter="\t"))
[tab3.write(value + '\t') for value in read_csv[1][1:]]
tab3.write("\n")
else:
[tab3.write('ND' + '\t') for locus in loci]
tab3.write("\n")
if os.path.isfile("RepeatedLoci.txt") == True:
#MLST
with open('RepeatedLoci.txt') as file7:
read_csv = list(csv.reader(file7, delimiter="\t"))
row_sample = namesample + '\t' + species[:-2] + '\t'
if len(read_csv)>1:
list_loci = []
for line in read_csv[1:]:
tab4.write(row_sample + line[0] + '\t' + line[1] + '\t' + line[2]+ '\n')
else:
tab4.write(row_sample + '\t' + '\t' + '\t' + '\n')
os.chdir('../')
tab1.close()
tab2.close()
tab3.close()
tab4.close()