-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathserver_whats_see.py
313 lines (232 loc) · 9.79 KB
/
server_whats_see.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import datetime
import sys
import os
import threading
import traceback
import warnings
from multiprocessing import Process
import nltk as nltk
from flask import Flask, render_template, request
from flask_socketio import SocketIO, emit, send
from gevent import monkey
from nltk.translate.bleu_score import sentence_bleu
import whats_see
warnings.simplefilter("ignore")
PORT = 4753
working_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
app = Flask(__name__)
monkey.patch_all()
sio = SocketIO(app, async_mode='gevent')
p = None
evaluation_in_progress = False
def logger(message):
now = datetime.datetime.now()
timestamp = now.strftime("%Y/%m/%d - %H:%M:%S")
return timestamp + " " + message
def get_state():
global evaluation_in_progress
whatssee = whats_see.WhatsSee.get_instance()
res = False
run = False
if p != None and p.is_alive():
run = True
if os.path.isdir(whatssee.train_dir):
res = True
return res, run, evaluation_in_progress
def start_training(num_train_examples, num_val_examples):
global sio
whatssee = whats_see.WhatsSee.get_instance()
log = logger("CLEANING")
sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
t = threading.Thread(target=whatssee.clean_last_training_data)
t.start()
t.join()
log = logger("DOWLOADING DATASET")
sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
t = threading.Thread(target=whatssee.download_dataset)
t.start()
t.join()
log = logger("DONE!")
sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
log = logger("PROCESSING DATA")
sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
t = threading.Thread(target=whatssee.process_raw_data, args=(num_train_examples, num_val_examples,))
t.start()
t.join()
log = logger("SAVING DATA")
sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
t = threading.Thread(target=whatssee.save_data_on_disk)
t.start()
t.join()
log = logger("TRAINING IN PROGRESS")
sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
# t = threading.Thread(target=whatssee.start_train)
# t.start()
# t.join()
history = whatssee.start_train()
resume, running, evalrun = get_state()
running = False
sio.emit('state', {'resume': resume, 'running': running, 'evalrun': evalrun}, namespace='/message', broadcast=True)
log = logger("END TRAINING")
sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
loss = history.history['loss'][-1]
val_loss = history.history['val_loss'][-1]
acc = history.history['acc'][-1]
val_acc = history.history['val_acc'][-1]
log = "LOSS: {:5.2f}".format(loss) + "\nACC: {:5.2f}%".format(100 * acc) + "\nVAL_LOSS: {:5.2f}".format(val_loss) + "\nVAL_ACC: {:5.2f}%".format(100 * val_acc)
sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
# log = "CLEANING"
# sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
# whatssee.clean_last_training_data()
# log = "DOWLOADING DATASET"
# sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
# whatssee.download_dataset()
# log = "PROCESSING DATA"
# sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
# whatssee.process_raw_data(num_train_examples, num_val_examples)
# log = "SAVE DATA"
# sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
# whatssee.save_data_on_disk()
# log = "TRAINING IN PROGRESS"
# sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
# whatssee.start_train()
# log = "END TRAINING"
# sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
# resume, running = get_state()
# running = False
# sio.emit('state', {'resume': resume, 'running': running}, namespace='/message', broadcast=True)
def resume_training():
global sio
whatssee = whats_see.WhatsSee.get_instance()
log = logger("LOADING DATA")
sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
t = threading.Thread(target=whatssee.load_data_from_disk)
t.start()
t.join()
log = logger("TRAINING IN PROGRESS")
sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
# t = threading.Thread(target=whatssee.start_train)
# t.start()
# t.join()
history = whatssee.start_train()
resume, running, evalrun = get_state()
running = False
sio.emit('state', {'resume': resume, 'running': running, 'evalrun': evalrun}, namespace='/message', broadcast=True)
log = logger("END TRAINING")
sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
loss = history.history['loss'][-1]
val_loss = history.history['val_loss'][-1]
acc = history.history['acc'][-1]
val_acc = history.history['val_acc'][-1]
log = "LOSS: {:5.2f}".format(loss) + "\nACC: {:5.2f}%".format(100 * acc) + "\nVAL_LOSS: {:5.2f}".format(val_loss) + "\nVAL_ACC: {:5.2f}%".format(100 * val_acc)
sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
# log = "LOADING DATA"
# sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
# whatssee.load_data_from_disk()
# log = "RESUMING TRAINING"
# sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
# whatssee.start_train()
# log = "END TRAINING"
# sio.emit('log', {'data': log}, namespace='/log', broadcast=True)
@app.route("/", methods=['GET'])
def home():
return render_template("home.html")
@app.route("/image", methods=['POST'])
def image():
imagefile = request.files.get('imagefile', '')
filename = request.form.get('filename')
ext = filename.rsplit(".", 1)[1]
whatssee = whats_see.WhatsSee.get_instance()
if ext.upper() in ["JPEG", "JPG", "PNG"]:
imagefile.save(whatssee.captioned_images_dir + filename)
return "Image received!"
else:
return "Invalid image!"
@sio.on('caption', namespace='/test')
def test_caption(message):
whatssee = whats_see.WhatsSee.get_instance()
filename = whatssee.dataset.test_images_dir + message['filename']
caption = whatssee.predict(filename)
original_captions = whatssee.dataset.get_captions_of(message['filename'])
if original_captions:
reference = []
bleu_scores = []
for c in original_captions:
# reference.append(c.split())
bleu_scores.append(sentence_bleu([c.strip().split()], caption.strip().split(), weights=(1.0, 0, 0, 0)))
bleu_scores_string = []
for b in bleu_scores:
bleu_scores_string.append("BLEU SCORE: {:4.1f}%".format(100 * b))
emit('response', {'caption': caption, 'originalcaptions': original_captions, 'bleuscores': bleu_scores_string})
else:
emit('response', {'caption': caption})
@sio.on('eval', namespace='/message')
def evaluate(message):
num_examples = int(message['n'])
global evaluation_in_progress
evaluation_in_progress = True
resume, running, evalrun = get_state()
emit('state', {'resume': resume, 'running': running, 'evalrun': evalrun}, broadcast=True)
whatssee = whats_see.WhatsSee.get_instance()
evaluation = whatssee.evaluate_model(num_examples)
emit('evaluation', {'evaluation': evaluation}, broadcast=True)
evaluation_in_progress = False
resume, running, evalrun = get_state()
emit('state', {'resume': resume, 'running': running, 'evalrun': evalrun}, broadcast=True)
@sio.on('get', namespace='/test')
def get_test_images(message):
whatssee = whats_see.WhatsSee.get_instance()
whatssee.set_dataset(message["dataset"])
test_images_name = whatssee.dataset.get_test_image_names()
emit('images', {'images': test_images_name})
@sio.on('connect', namespace='/message')
def connect():
resume, running, evalrun = get_state()
emit('state', {'resume': resume, 'running': running, 'evalrun': evalrun}, broadcast=True)
if running:
log = logger("TRAINING IN PROGRESS")
emit('log', {'data': log}, namespace='/log', broadcast=True)
@sio.on('resume', namespace='/message')
def resume():
global p
p = Process(target=resume_training, args=())
p.start()
log = logger("RESUMING TRAINING")
emit('log', {'data': log}, namespace='/log', broadcast=True)
resume, running, evalrun = get_state()
emit('state', {'resume': resume, 'running': running, 'evalrun': evalrun}, broadcast=True)
@sio.on('start', namespace='/message')
def start(message):
dataset_name = message['dataset']
num_train_examples = int(message['nt'])
num_val_examples = int(message['nv'])
total_epochs = int(message['ne'])
whatssee = whats_see.WhatsSee.get_instance()
whatssee.set_dataset(dataset_name)
whatssee.set_total_epochs(total_epochs)
global p
p = Process(target=start_training, args=(num_train_examples, num_val_examples,))
p.start()
log = logger("STARTING NEW TRAINING")
emit('log', {'data': log}, namespace='/log', broadcast=True)
resume, running, evalrun = get_state()
emit('state', {'resume': resume, 'running': running, 'evalrun': evalrun}, broadcast=True)
@sio.on('stop', namespace='/message')
def stop():
global p
p.kill()
log = logger("STOP TRAINING")
emit('log', {'data': log}, namespace='/log', broadcast=True)
resume, running, evalrun = get_state()
running = False
emit('state', {'resume': resume, 'running': running, 'evalrun': evalrun}, broadcast=True)
@sio.on('caption', namespace='/message')
def caption(message):
whatssee = whats_see.WhatsSee.get_instance()
filename = whatssee.captioned_images_dir + message['filename']
caption = whatssee.predict(filename)
emit('response', {'caption': caption})
if __name__ == "__main__":
dataset_name = "flickr"
whatssee = whats_see.WhatsSee(dataset_name, working_dir)
sio.run(app, host='0.0.0.0', port=PORT)