-
Notifications
You must be signed in to change notification settings - Fork 0
/
m5.tex
27 lines (25 loc) · 905 Bytes
/
m5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\title{MATH 4338 Main Problem 5}
\date{}
\author{Andy Lu}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsthm}
\newtheorem{theorem*}{Question}
\begin{document}
\maketitle
\begin{proof}
Suppose $f$ is nondecreasing on an interval $I = \{x: a< x< b\}$, where
$a,b \in \mathbb{R}$. Suppose $\exists M \in \mathbb{R}$ such that
$f(x) \leq M$ $\forall x \in I$. By definition, $M$ is an upperbound of
$f(x)$. By Theorem 3.5, we can pick $C \in \mathbb{R}$ such that $C$ is, by
definition, the least upper bound of $f(x)$. Note, this means $C \leq M$.
Then, by the Nested Intervals Theorem, it follows that
$$\lim_{x \rightarrow b} f(x) = C$$. Since the limit exists, the one sided
limit,
$$\lim_{x \rightarrow b^-} f(x) = C$$
must also exist.
\end{proof}
\end{document}