-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhjb_inverse_3_var.py
368 lines (285 loc) · 10.2 KB
/
hjb_inverse_3_var.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
os.environ["DDEBACKEND"] = "tensorflow"
os.environ["TF_XLA_FLAGS"] = "--tf_xla_auto_jit=2"
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
from math import pi
import deepxde as dde
from deepxde.backend import tf
dde.config.disable_xla_jit()
k = 0.005
a_train = dde.Variable(2.0) # a = a_train / 10
phi = 10
w = 1
r = 0.03
rl_train = dde.Variable(0.0) # rl = (sigmoid(rl_train) * 2 + 3.5) / 100
sigma = 0.08
cf_train = dde.Variable(2.0) # cf = cf_train / 100
m_bar = 0.1
ce = 0.1
beta_M = 1e3
beta = 0.05
epsilon = 1
D0 = 1.0
eps = 1
# 0.0075 is a small value chosen so the v > e region is continuous
ind_g_eps = 0.0075
e_target = 0.41710332
z_target = 7.515612486080857
l_target = 4.704932961985371
l_star_target = 0.006457735763252105
z_min = 0.2
z_max = 10
z_mean = 5
e_min = 0.01
e_max = 1.2
stdev = (z_max - z_min) / 4
area = (z_max - z_min) * (e_max - e_min)
def f(m, n):
a = a_train / 10
return m * n**a
def psi(x):
e = x[:, 0]
z = x[:, 1]
psi_unnorm = (
1 / (stdev * tf.sqrt(2 * pi)) * tf.exp(-0.5 * ((z - z_mean) / stdev) ** 2)
)
psi = psi_unnorm * 7.471114 * tf.cast(e <= 0.15, dtype=tf.float32)
return psi
def integrate(x):
# Computes double integral over the entire region
return tf.reduce_sum(x) / tf.cast(tf.size(x), dtype=tf.float32) * area
def pde(x, y):
e = x[:, 0:1]
z = x[:, 1:2]
dv_e = dde.grad.jacobian(y, x, i=0, j=0)
dv_z = dde.grad.jacobian(y, x, i=0, j=1)
dv_zz = dde.grad.hessian(y, x, component=0, i=1, j=1)
dg_e = dde.grad.jacobian(y, x, i=1, j=0)
dg_z = dde.grad.jacobian(y, x, i=1, j=1)
dg_zz = dde.grad.hessian(y, x, component=1, i=1, j=1)
v = y[:, 0:1]
g = y[:, 1:2]
mu = -0.005 * (z - 5)
rl = (tf.math.sigmoid(rl_train) * 2 + 3.5) / 100
a = a_train / 10
cf = cf_train / 100
ind = tf.cast(
((rl - r) * z * a / w) ** (1 / (1 - a)) < (phi * e / z) ** (1 / a),
dtype=tf.float32,
)
l_star = tf.minimum(
((rl - r) * z * a / w) ** (1 / (1 - a)), (phi * e / z) ** (1 / a)
)
pi_star = 2 * (rl - r) * z * l_star**a + e * r - 2 * w * l_star - cf
zeta = k * tf.maximum(tf.cast(0, dtype=tf.float32), phi * e - f(z, l_star))
v_u = e
hjb = r * v - tf.maximum(
pi_star * (1 + dv_e)
+ (1 - dv_e) * ind * zeta
+ dv_z * mu
+ 1 / 2 * dv_zz * sigma**2,
r * v_u,
)
psi_val = psi(x)
psi_val = tf.reshape(psi_val, [-1, 1])
m = 0.1
mu_z = -0.005
mu_e = pi_star - ind * zeta
l_star_e = (1 - ind) * (phi / z) ** (1 / a) * (1 / a) * (e ** ((1 / a) - 1))
pi_star_e = (
2 * (rl - r) * z * a * (l_star) ** (a - 1) * l_star_e + r - 2 * w * l_star_e
)
zeta_e = (
k
* tf.cast(phi * e > z * l_star**a, dtype=tf.float32)
* (phi - z * a * l_star ** (a - 1) * l_star_e)
)
mu_ee = pi_star_e - zeta_e * ind
ind_g = tf.cast((v - e) > ind_g_eps, dtype=tf.float32)
kfe = (
-mu_z * g
- mu * dg_z
- mu_ee * g
- mu_e * dg_e
+ dg_zz * sigma**2 / 2
+ m * psi_val * ind_g
) * ind_g
# No error on first iteration
if tf.reduce_sum(g) == 0:
e_target_pred = 0.0
z_target_pred = 0.0
l_target_pred = 0.0
l_star_target_pred = 0.0
else:
gp = g / integrate(g)
e_target_pred = integrate(e * gp)
z_target_pred = integrate(z * gp)
l_target_pred = integrate(z * l_star**a / e * gp)
l_star_target_pred = integrate(l_star * gp)
e_target_loss = (e_target_pred - e_target) * tf.ones(tf.shape(x))
z_target_loss = (z_target_pred - z_target) * tf.ones(tf.shape(x))
l_target_loss = (l_target_pred - l_target) * tf.ones(tf.shape(x))
l_star_target_loss = (l_star_target_pred - l_star_target) * tf.ones(tf.shape(x))
return [hjb, kfe, e_target_loss, z_target_loss, l_target_loss, l_star_target_loss]
geom = dde.geometry.Rectangle([e_min, z_min], [e_max, z_max])
def boundary_z(x, on_boundary):
return on_boundary and (np.isclose(x[1], z_min) or np.isclose(x[1], z_max))
def boundary_e(x, on_boundary):
return on_boundary and np.isclose(x[0], e_min)
def output_transform(x, y):
e, z = x[:, 0:1], x[:, 1:2]
v, g = y[:, 0:1], y[:, 1:2]
ind_g = tf.cast(v > e + ind_g_eps, dtype=tf.float32)
return tf.concat([v, (g * ind_g) ** 2], axis=1)
def func_bc(x, y):
z = x[:, 1:2]
g = y[:, 1:2]
mu = -0.005 * (z - 5)
dg_z = dde.grad.jacobian(y, x, i=1, j=1)
return -mu * g + 0.5 * sigma**2 * dg_z
bcD_v = dde.DirichletBC(geom, lambda x: 0.01, boundary_e, component=0)
bcN_v = dde.NeumannBC(geom, lambda x: 0, boundary_z, component=0)
bcN_g = dde.icbc.OperatorBC(
geom,
lambda x, y, _: func_bc(x, y),
boundary_z,
)
e_true = np.loadtxt(open("../data/hjb/hjb_e.csv", "r"), delimiter=",", dtype=np.float32).flatten()
z_true = np.loadtxt(open("../data/hjb/hjb_z.csv", "r"), delimiter=",", dtype=np.float32).flatten()
v_true = np.loadtxt(open("../data/hjb/hjb_v.csv", "r"), delimiter=",", dtype=np.float32).flatten()[
:, None
]
g_true = np.loadtxt(open("../data/hjb/hjb_g.csv", "r"), delimiter=",", dtype=np.float32).flatten()[
:, None
]
X = np.vstack((e_true, z_true)).T
def func(x):
return np.hstack((griddata(X, v_true, x), griddata(X, g_true, x)))
def v_l2(y_true, y_pred):
v_true = y_true[:, 0]
v_pred = y_pred[:, 0]
return np.linalg.norm(v_true - v_pred) / np.linalg.norm(v_true)
def g_l2(y_true, y_pred):
g_true = y_true[:, 1]
g_pred = y_pred[:, 1]
g_true = np.maximum(g_true, 0)
g_pred = np.maximum(g_pred, 0)
g_true = g_true / np.sum(g_true)
g_pred = g_pred / np.sum(g_pred)
return np.linalg.norm(g_true - g_pred) / np.linalg.norm(g_true)
data = dde.data.PDE(
geom,
pde,
[bcD_v, bcN_v, bcN_g],
num_domain=65536,
num_boundary=1024,
num_test=65536,
solution=func,
)
net = dde.nn.FNN([2] + [64] * 6 + [2], "tanh", "Glorot uniform")
net.apply_output_transform(output_transform)
model = dde.Model(data, net)
lw = [1e6, 5e4, 1e2, 1e1, 1, 1e6, 1e2, 1e3, 1e5]
variable = dde.callbacks.VariableValue(
[rl_train, a_train, cf_train], period=1000, precision=9
)
model.compile(
"adam",
lr=1e-3,
decay=("inverse time", 2500, 1.0),
loss_weights=lw,
external_trainable_variables=[rl_train, a_train, cf_train],
metrics=[v_l2, g_l2],
)
losshistory, train_state = model.train(
epochs=150000, callbacks=[variable], display_every=1000
)
dde.saveplot(losshistory, train_state, issave=True, isplot=True)
N = 400 # Create N x N heatmaps of the functions
e_vals = np.linspace(e_min, e_max, N)
z_vals = np.linspace(z_min, z_max, N)
v_pred = np.empty((N, N))
g_pred = np.empty((N, N))
for i in range(N):
for j in range(N):
model_pred = model.predict([[e_vals[j], z_vals[i]]])
v_pred[i, j] = model_pred[0, 0]
g_pred[i, j] = model_pred[0, 1]
e_true = np.genfromtxt("../data/hjb/hjb_e.csv", delimiter=",").T
z_true = np.genfromtxt("../data/hjb/hjb_z.csv", delimiter=",").T
v_true = np.genfromtxt("../data/hjb/hjb_v.csv", delimiter=",").T
g_true = np.maximum(np.genfromtxt("../data/hjb/hjb_g.csv", delimiter=",").T, 0)
def integrate_np(f):
return np.sum(f) / np.size(f) * area
# Print the results for the predicted variables
rl_true = 0.043343
rl_pred = (1 / (1 + np.exp(-rl_train)) * 2 + 3.5) / 100
a_true = 0.3
a_pred = a_train / 10
cf_true = 0.03
cf_pred = cf_train / 100
ce_true = 0.1
# Solve for c_e using the technique in Section
e_vals_reshaped = np.reshape(e_vals, (1, N))
z_vals_reshaped = np.reshape(z_vals, (N, 1))
psi_unnorm = (
1
/ (stdev * np.sqrt(2 * pi))
* np.exp(-0.5 * ((z_vals_reshaped - z_mean) / stdev) ** 2)
)
psi = psi_unnorm * 7.471114 * (e_vals_reshaped <= 0.15)
ce_pred = integrate_np(v_pred * psi)
# Calculate the true value of g using Section 3.2.1
l_star_pred = np.minimum(
((rl_pred - r) * z_true * a_pred / w) ** (1 / (1 - a_pred)),
(phi * e_true / z_true) ** (1 / a_pred),
)
L = integrate_np(z_vals * l_star_pred**a_pred * g_pred)
m_pred = (beta / (rl_pred - r) - D0) / L * 0.1
g_pred = g_pred * (m_pred / 0.1)
# Plot predicted and true values of v and g
def plot_heatmap(fun, title):
fig, ax = plt.subplots()
c = ax.pcolormesh(e_vals, z_vals, fun, cmap="rainbow")
ax.set_aspect(0.1)
ax.set_ylabel("z")
ax.set_xlabel("e")
ax.set_title(title)
cbar = fig.colorbar(c, ax=ax)
plt.show()
plot_heatmap(v_pred, "PINN")
plot_heatmap(v_true, "Reference")
plot_heatmap(g_pred, "PINN")
plot_heatmap(g_true, "Reference")
# Print values of parameters and endogenous variable r^l
print("true r^l value: %.4f\npred r^l value: %.4f\n" % (rl_true, rl_pred))
print("true alpha value: %.4f\npred alpha value: %.4f\n" % (a_true, a_pred))
print("true c_e value: %.4f\npred c_e value: %.4f\n" % (ce_true, ce_pred))
print("true c_f value: %.4f\npred c_f value: %.4f" % (cf_true, cf_pred))
# Calculate true and predicted cumulative g
gp_pred = g_pred / integrate_np(g_pred)
gp_true = g_true / integrate_np(g_true)
gc_true = np.empty((400, 400), dtype=float)
gc_pred = np.empty((400, 400), dtype=float)
for i in range(400):
for j in range(400):
# Val refers to gc[i, j]
if i == 0 or j == 0:
val_pred = 0
val_true = 0
else:
gp_true_section = gp_true[:i, :j]
gp_pred_section = gp_pred[:i, :j]
val_true = integrate_np(gp_true_section) * (i / 400) * (j / 400)
val_pred = integrate_np(gp_pred_section) * (i / 400) * (j / 400)
gc_pred[i, j] = val_pred
gc_true[i, j] = val_true
# Calculate the L2 relative errors of v and cumulative g
def l2(a, b):
return np.linalg.norm(a - b) / np.linalg.norm(b) * 100
v_l2_err = l2(v_pred, v_true)
gc_l2_err = l2(gc_pred, gc_true)
print("v L2 relative error: %.2f" % v_l2_err)
print("g_c L2 relative error: %.2f" % gc_l2_err)