-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDemoSoftmax_2D.m
44 lines (33 loc) · 1.14 KB
/
DemoSoftmax_2D.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
%------------------------------------------------------------------------------%
% This is a demo softmax for mnist data classification
%------------------------------------------------------------------------------%
clear all;
% SET DEMO PARAMETERS
demo_add_noise = 0;
%% ------------------------------ LOAD DATA -----------------------------------%%
load ./data/mnist/mnistSmall.mat;
trainDa = [];
trainLa = [];
trainDa = trainData';
for i = 1:size(trainData,1)
trainLa = [trainLa,find(trainLabels(i,:)==1)];
end
testDa = [];
testLa = [];
testDa = testData';
for i = 1:size(testData,1)
testLa = [testLa,find(testLabels(i,:)==1)];
end
trainDa = trainDa(:,1:2000);
trainLa = trainLa(:,1:2000);
% ADD NOISE
if demo_add_noise
fprintf('------------------- ADD NOISE IN TEST DATA ------------------- \n');
b = rand(size(testDa)) > 0.9;
noised = testDa;
r = rand(size(testDa));
noised(b) = r(b);
testDa = noised;
end
%% ------------------------------ DIRECTED SOFTMAX -----------------------------%%
softmaxExercise(trainDa,trainLa,testDa,testLa);