
Component Problem Solution

assessment-locks.component.ts P1: ngOnInit is an async function for no reason Remove async from its signature

P2: courseId is undefined in the component (because the subscription in ngOnInit isn't done when the
method is called)

ngOnInit: only call getAllLockedSubmissions
when there already is a subscription result

test-case-distribution-
chart.component.ts https://github.com/ls1intum/Artemis/pull/6557/files got lost in "fix" + merge Apply the changes from the PR again

text-feedback-
conflicts.component.ts this.activatedRoute.data is undefined in ngOnInit Proper mock for activatedRoute

P2: mocked activatedRoute just doesn't have data, it's just mocked as { snapshot: { paramMap:
convertToParamMap({ feedbackId: 1 }) } } for some reason. Proper mock for activatedRoute

navbar.component.ts Angular changed the types for RouterEvent slightly ⇒ Type Error Use Event instead of RouterEvent for the type,
which seems to be the new name for this part

statistics-average-score-
graph.component.ts / .html P1: typeFilter is undefined when the HTML is rendered ⇒ crash Merge typeFilter with exerciseTypeFilter,

merge categoryFilter with chartCategoryFilter

P2: typeFilter is set to exerciseTypeFilter outside of the constructor. I don't know what the order
should be for this. Apparently, it changed. (readonly typeFilter = this.exerciseTypeFilter;) Make the merged variables readonly directly

P3: There is typeFilter and exerciseTypeFilter, although they are always the exact same reference
(only one is private and the other is readonly)

P4: There is a typo in the exerciseName "FarcadePattern" (non-breaking) Fix the typo

example-text-
submission.component.spec.ts

ngOnInit is async. There is some problem with fakeAsync: Promises are not automatically awaited
when calling tick (for some reason - flush / flushMicrotasks also does not work). It works when
using fakeAsync + async + await.

Need control over tick time? ⇒ use
fakeAsync(async () => { ... }) and await
Don't need it? ⇒ just use async tests
Alternative solution (which I don't like as much):
Don't use async
Alternative solution (which I also don't like): Use

https://github.com/ls1intum/Artemis/pull/6557/files


Component Problem Solution

.then everywhere in your tests
⇒ replace fakeAsync with async directly

text-submission-
assessment.component.ts P1: async-fakeAsync problem, see example-text-submission.component.spec.ts async tests

P2: The mocked ActivatedRoute is passed as a function generating the route instead of a route?? Replace function with constant

P3: Private route + activeRoute attributes of the component are set explicitly in the test instead of just
using normal Angular DI

Properly mock instead of overriding private
variables

P4: should navigate to conflicting submission test errors because the submission is changed by
another test before this test (doesn't error when started along). I guess that this was also the reason
some of the other tests worked before, but shouldn't have worked.

Move initialization of used variables into
beforeEach

P5: should display error when submitting but assessment invalid fails because the component is
not properly initialized when it is tested

await component.ngInit() in the should display
error when submitting but assessment invalid
test. I also added a test that the error is only
shown once.

P6: should display error when complaint resolved but assessment invalid fails because ???. I
honestly don't understand what the test is supposed to actually do. I have the suspicion that the test
only worked before because of some side effects from the other tests, but I don't know for sure.

I made the assessment invalid like it is done in
the should display error when saving but
assessment invalid test. This works & I'm ok with
this after having sunk too much time into this
issue. I've also added a check that the alert is
only shown once, because I think that makes
sense.

P7: In the should display error when complaint resolved but assessment invalid, the assessment
does not seem to be invalid at all

Make the assessment invalid by setting
component.unreferencedFeedback manually

P8: In the should navigate to conflicting submission test, the called URL is actually different. This
is because isExamMode is true on the component. This makes sense, because the mocked route
includes examId. Previously, the mocked route wasn't there, so it was pretty much empty.

Add the exam part to the expected URL because
now, the mocked route assumes an exam
exercise.

Problem in general: The textBlockRefs, which is an essential part of the tested component(s)
(because referencedFeedback is based on it), is exclusively modified in-place: text-assessment-
base.component.ts, lines 118 and 136 (just for reference if you want to debug yourself). This makes it
pretty hard to keep track of where data is coming from.



Component Problem Solution

textblock-feedback-
editor.component.ts async-fakeAsync problem, see example-text-submission.component.ts use async

tutorial-groups-registration-
import-dialog.component.ts P1: An error is logged to the console, although the promise result is catched

Add jest.spyOn(console,
'error').mockImplementation(); so that the test
is working. I added a comment explaining the
situation. I'm relatively unhappy with this, but I
cannot find a better working solution for this
issue.

P2: Angular Jest is having problems with async/await again. This time, a thrown error from a promise
is recognized as a normal JS error instead of a promise rejection :(

Add jest.spyOn(console,
'error').mockImplementation(); so that the test
is working. I added a comment explaining the
situation. I'm relatively unhappy with this, but I
cannot find a better working solution for this
issue.

artemis-
version.interceptor.ts

I've used 0.0.0 as the new default version number in environment.ts. The current test assumes 0.0.0
is not the version number from before and tests an update event with that. Therefore, there is no
update.

I've changed the version in the test to x.y.z ⇒ it's
different again

exam-participation.service.ts

The expected object is composed of exercises, exam and all properties of examToSend. However, the
order of parameters in Object.assign is wrong. Additional info: Apparently, new StudentExam() created
this before, which is wrong anyways. So the behavior is more correct than before:

Change the order. Also, I removed an
unnecessary copy of the data.

file-upload-
exercise.service.ts see exam-participation.service.ts see exam-participation.service.ts

modeling-
submission.service.ts

P1: Again, this is an issue with new ___() just having created an object with the set properties before:
(see screenshot above) Add exerciseId = 5 to elemDefault

https://user-images.githubusercontent.com/9006596/238104261-af6715e8-c6ac-48bf-ac79-66e14f93bac7.png


Component Problem Solution

P2: Also, the Jest toMatchObject check only checks equivalence for existing values on the object.
Because the exerciseId wasn't existing on the object before, the check just passed Used toStrictEqual instead of toMatchObject

P3: The elemDefault does not have an exerciseId = 5 by default, but the comparison assumes so Add exerciseId = 5 to elemDefault

participation.service.ts The default value for new Participation() objects for results and submission is undefined, but the
participation.service has functions mapping empty arrays to them, so the expectiations don't match
here. Apparently, this issue came up only now because the way how empty new JS objects are
initialized now: new StudentParticipation() now creates an object that's initialized with a lot of
undefined values, which breaks the test using .toMatchObject. Here's a debugger breakpoint from
before the changes:

initialize StudentParticipation so that it's
compatible with .toMatchObject expectations

https://user-images.githubusercontent.com/9006596/239123407-ad886613-0f69-49e1-9de4-e439cf76bec0.png


Component Problem Solution

- After, without any changes to the test code:

programming-
exercise.service.ts see exam-participation.service.ts see exam-participation.service.ts

programming-
exercise.service.ts see exam-participation.service.ts see exam-participation.service.ts

navigation-util.service.ts
P1: The value of urlTreeMock isn't an input anywhere, it's just an expectation. I don't know how the
router would "know" this value. Add the mockReturnValue

https://user-images.githubusercontent.com/9006596/239124651-76158e73-d4e8-4721-80aa-36fc92e9a6cb.png


Component Problem Solution

P2: Apparently, the MockRouter uses "testValue" as its default return value, which probably is why the
tests passed before. This makes the test more likely to pass "accidentally".

Change the test value to "urlTreeMockTestValue",
to ensure that the values are not accidentally
mixed up.

P3: The tests around the interaction between router.createUrlTree and router.serializeUrl is kind
of useless when the mock router always returns a constant: serializeUrl =
jest.fn().mockReturnValue('testValue');

Mock the return value of serializationMock as
well and check that (params are already
checked)


