-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevals.py
executable file
·53 lines (50 loc) · 2.24 KB
/
evals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# -*- coding: utf-8 -*-
import numpy as np
from sklearn.metrics import f1_score
def evaluate(pred, gold):
"""
evaluate accuracy and macro-F1 of ABSA task
"""
pred_count = np.zeros(3, dtype='int32')
gold_count = np.zeros(3, dtype='int32')
hit_count = np.zeros(3, dtype='int32')
# number of testing documents
n_test = len(gold)
error_cases = {}
for i in range(n_test):
y_p = int(pred[i])
y_g = gold[i]
# print('y_p=', y_p)
pred_count[y_p] += 1
gold_count[y_g] += 1
if y_p == y_g:
hit_count[y_p] += 1
else:
error_cases[i] = [y_p, y_g]
# number of true predictions
total_hit = sum(hit_count)
# accuracy
acc = float(total_hit) / n_test
# negative: 0, positive: 1, neutral: 2
r_neg = float(hit_count[0]) / gold_count[0]
p_neg = float(hit_count[0]) / pred_count[0]
r_pos = float(hit_count[1]) / gold_count[1]
p_pos = float(hit_count[1]) / pred_count[1]
r_neu = float(hit_count[2]) / gold_count[2]
p_neu = float(hit_count[2]) / pred_count[2]
# formula for calculation of macro-f1
# r = (r_neg + r_pos + r_neu) / 3.0
# p = (p_neg + p_pos + p_neu) / 3.0
# macro_f = 2 * p * r / (p + r)
macro_f = f1_score(y_true=gold, y_pred=pred, labels=[0, 1, 2], average='macro')
result_string = ''
result_string = '%sneg: recall: %s/%s, precision: %s/%s \n' % (result_string,
hit_count[0], gold_count[0], hit_count[0],
pred_count[0])
result_string = '%spos: recall: %s/%s, precision: %s/%s \n' % (result_string,
hit_count[1], gold_count[1], hit_count[1],
pred_count[1])
result_string = '%sneu: recall: %s/%s, precision: %s/%s \n' % (result_string,
hit_count[2], gold_count[2], hit_count[2],
pred_count[2])
return acc, macro_f, result_string, error_cases