-
Notifications
You must be signed in to change notification settings - Fork 2
/
lightwavesl1l2_functions.py
executable file
·294 lines (234 loc) · 8.44 KB
/
lightwavesl1l2_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# -*- coding: utf-8 -*-
# This code is based on the sktime ROCKET code, which has the following license
# BSD 3-Clause License
#
# Copyright (c) 2019 - 2020 The sktime developers.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
from numba import njit
from numba import prange
@njit(
"Tuple((float32[:],int32[:],float32[:],int32[:],int32[:],int32[:],"
"int32[:]))(int32,float32[:,:],int32[:],optional(int32))",
cache=True,
)
def _generate_first_phase_kernels(n_columns, candidate_kernels, candidate_dilations, seed):
"""
Generates kernels with all dilations for each input channel, with suitable padding so that output of convolution remains the same length as input
:param n_columns: Number of channels of dataset (slice)
:param candidate_kernels: The set of base kernels used by LightWaveS
:param candidate_dilations: The set of base dilations used by LightWaveS
:param seed: Random seed
:return: Tuple of information similar to ROCKET with the weights, dilations, paddings, etc to be used during transformation
"""
if seed is not None:
np.random.seed(seed)
num_kernels = int(len(candidate_kernels) * len(candidate_dilations) * n_columns)
lengths = np.zeros(num_kernels, dtype=np.int32)
num_channel_indices = np.ones(num_kernels, dtype=np.int32)
channel_indices = np.repeat(np.arange(n_columns), int(len(candidate_kernels) * candidate_dilations.size)).astype(
np.int32)
w_l = 0
for k in candidate_kernels:
w_l += len(k) * n_columns * candidate_dilations.size
weights = np.zeros(int(w_l),
dtype=np.float32
)
biases = np.zeros(num_kernels).astype(np.float32)
paddings = np.zeros(num_kernels, dtype=np.int32)
dilations = np.zeros(num_kernels, dtype=np.int32)
a1 = 0 # for weights
c = 0
for ch in range(n_columns):
for i in range(len(candidate_kernels)):
_length = len(candidate_kernels[i])
for j in candidate_dilations:
dilations[c] = 2 ** j
paddings[c] = ((_length - 1) * (2 ** j)) // 2
b1 = a1 + _length
weights[a1:b1] = candidate_kernels[i]
a1 = b1
lengths[c] = _length
c += 1
return (
weights,
lengths,
biases,
dilations,
paddings,
num_channel_indices,
channel_indices,
)
@njit(fastmath=True, cache=True)
def _apply_kernel(X, weights, length, bias, dilation, padding):
"""
Perform convolution of kernel with input, return output of convolution and features
:param X: Input vector
:param weights: Kernel weights
:param length: Kernel length
:param bias: Kernel bias
:param dilation: Kernel dilation
:param padding: Padding to apply to input
:return: (Convolution_output, np array of features)
"""
n_timepoints = len(X)
output_length = ((n_timepoints + (2 * padding)) - ((length - 1) * dilation)) // 2
_output = np.zeros(output_length)
_ppv = 0
_max = np.NINF
_min = np.PINF
end = (n_timepoints + padding) - ((length - 1) * dilation)
store = True
store_idx = 0
c = 0
_ls = 0
for i in range(-padding, end):
_sum = bias
index = i
for j in range(length):
if index > -1 and index < n_timepoints:
_sum = _sum + weights[j] * X[index]
index = index + dilation
_sum /= (dilation * np.sqrt(dilation))
if _sum > 0:
c += 1
_ppv += 1
else:
if c > _ls:
_ls = c
c = 0
if abs(_sum) > _max:
_max = abs(_sum)
if abs(_sum) < _min:
_min = abs(_sum)
if store:
_output[store_idx] = np.abs(_sum)
store_idx += 1
store = False
else:
store = True
return _output, np.array(
[_ppv / (end + padding), _max, _ls / (end + padding), _min]).reshape((1, -1))
@njit(fastmath=True, cache=True)
def _apply_kernel_features_only(X, weights, length, bias, dilation, padding):
"""
Perform convolution of kernel with input, return only features
:param X: Input vector
:param weights: Kernel weights
:param length: Kernel length
:param bias: Kernel bias
:param dilation: Kernel dilation
:param padding: Padding to apply to input
:return: Np array of features
"""
n_timepoints = len(X)
_ppv = 0
_max = np.NINF
_min = np.PINF
end = (n_timepoints + padding) - ((length - 1) * dilation)
_ls = 0
c = 0
for i in range(-padding, end):
_sum = bias
index = i
for j in range(length):
if index > -1 and index < n_timepoints:
_sum = _sum + weights[j] * X[index]
index = index + dilation
_sum /= (dilation * np.sqrt(dilation))
if _sum > 0:
c += 1
_ppv += 1
else:
if c > _ls:
_ls = c
c = 0
if abs(_sum) > _max:
_max = abs(_sum)
if abs(_sum) < _min:
_min = abs(_sum)
return np.array([_ppv / (end + padding), _max, _ls / (end + padding), _min]).reshape(
(1, -1))
@njit(
"float32[:,:,:](float32[:,:,:],Tuple((float32[::1],int32[:],float32[:],"
"int32[:],int32[:],int32[:],int32[:])))",
parallel=True,
fastmath=True,
cache=True,
)
def _apply_2layer_kernels(X, kernels):
"""
Apply all kernels to input
:param X: The time series input of dimension (n_instances, channels, timesteps)
:param kernels: The tuple with the kernel information, similar to ROCKET
:return: Array of features, of dimension (n_instances,n_kernels,n_features)
"""
(
weights,
lengths,
biases,
dilations,
paddings,
num_channel_indices,
channel_indices,
) = kernels
num_features = 4
n_instances, n_columns, n_timepoints = X.shape
num_kernels = len(lengths)
_X = np.zeros(
(n_instances, num_kernels, 2 * num_features), dtype=np.float32
)
for i in prange(n_instances):
a1 = 0 # for weights
a2 = 0 # for channel_indices
a3 = 0 # for features
for j in range(num_kernels):
b1 = a1 + num_channel_indices[j] * lengths[j]
b2 = a2 + num_channel_indices[j]
b3 = a3 + 1
conv_output, _X[i, a3:b3, :num_features] = _apply_kernel(
X[i, channel_indices[a2]],
weights[a1:b1],
lengths[j],
biases[j],
dilations[j],
paddings[j]
)
_X[i, a3:b3, num_features:2 * num_features] = _apply_kernel_features_only(
conv_output,
weights[a1:b1],
lengths[j],
biases[j],
dilations[j],
paddings[j]
)
a1 = b1
a2 = b2
a3 = b3
return _X