-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathkneighbors.py
801 lines (674 loc) · 36.1 KB
/
kneighbors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
import argparse
import ast
import hashlib
import json
import numpy as np
import os
import time
# For datasets
from torchvision.datasets import CIFAR10
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from dtd import Dataloder
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from imagenet import Imagenet32
import utils
print('kneighbors.py')
parser = argparse.ArgumentParser('linear classification using patches k nearest neighbors indicators for euclidian metric')
# parameters for the patches
parser.add_argument('--dataset', help="cifar10/?", default='cifar10')
parser.add_argument('--no_padding', action='store_true', help='no padding used')
parser.add_argument('--patches_file', help=".t7 file containing patches", default='')
parser.add_argument('--n_channel_convolution', default=256, type=int)
parser.add_argument('--spatialsize_convolution', default=6, type=int)
parser.add_argument('--padding_mode', default='constant', choices=['constant', 'reflect', 'symmetric'], help='type of padding for torch RandomCrop')
parser.add_argument('--whitening_reg', default=0.001, type=float, help='regularization bias for zca whitening, negative values means no whitening')
parser.add_argument('--gaussian_patches', action='store_true', help='patches sampled for gaussian RV')
parser.add_argument('--learn_patches', action='store_true', help='learn the patches by SGD')
# parameters for the second layer of patches
parser.add_argument('--n_channel_convolution_2', default=0, type=int)
parser.add_argument('--spatialsize_convolution_2', default=0, type=int)
parser.add_argument('--whitening_reg_2', default=1e-3, type=float, help='regularization bias for second zca whitening, negative values means no whitening')
parser.add_argument('--kneighbors_2', default=0, type=int)
parser.add_argument('--kneighbors_fraction_2', default=0.25, type=float)
parser.add_argument('--sigmoid_2', default=0., type=float)
# parameters for the extraction
parser.add_argument('--stride_convolution', default=1, type=int)
parser.add_argument('--stride_avg_pooling', default=2, type=int)
parser.add_argument('--spatialsize_avg_pooling', default=5, type=int)
parser.add_argument('--kneighbors', default=0, type=int)
parser.add_argument('--kneighbors_fraction', default=0.25, type=float)
parser.add_argument('--finalsize_avg_pooling', default=0, type=int)
parser.add_argument('--sigmoid', default=0., type=float)
parser.add_argument('--dpp_subsample', action='store_true', help='subsample patches with DPP')
# parameters of the classifier
parser.add_argument('--batch_norm', action='store_true', help='add batchnorm before classifier')
parser.add_argument('--no_affine_batch_norm', action='store_true', help='affine=False in batch norms')
parser.add_argument('--normalize_net_outputs', action='store_true', help='precompute the mean and std of the outputs to normalize them (alternative to batch norm)')
parser.add_argument('--bottleneck_dim', default=0, type=int, help='bottleneck dimension for the classifier')
parser.add_argument('--convolutional_classifier', type=int, default=0, help='size of the convolution for convolutional classifier')
parser.add_argument('--bottleneck_spatialsize', type=int, default=1, help='spatial size of the bottleneck')
parser.add_argument('--bottleneck_stride', type=int, default=1, help='spatial size of the bottleneck')
parser.add_argument('--relu_after_bottleneck', action='store_true', help='add relu after bottleneck ')
parser.add_argument('--bn_after_bottleneck', action='store_true', help='add batch norm after bottleneck ')
parser.add_argument('--dropout', type=float, default=0., help='dropout after relu')
parser.add_argument('--feat_square', action='store_true', help='add square features')
parser.add_argument('--resnet', action='store_true', help='resnet classifier')
# parameters of the optimizer
parser.add_argument('--batchsize', type=int, default=512)
parser.add_argument('--batchsize_net', type=int, default=0)
parser.add_argument('--lr_schedule', type=str, default='{0:1e-3, 1:1e-4}')
parser.add_argument('--nepochs', type=int, default=90)
parser.add_argument('--optimizer', choices=['Adam', 'SGD'], default='Adam')
parser.add_argument('--sgd_momentum', type=float, default=0.)
parser.add_argument('--weight_decay', type=float, default=0.)
# hardware parameters
parser.add_argument('--path_train', help="path to imagenet", default='/d1/dataset/imagenet32/out_data_train')
parser.add_argument('--path_test', help="path to imagenet", default='/d1/dataset/imagenet32/out_data_val')
parser.add_argument('--path', help="path to imagenet", default='/d1/dataset/2012')
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--multigpu', action='store_true')
parser.add_argument('--no_cudnn', action='store_true', help='disable cuDNN to prevent cuDNN error (slower)')
parser.add_argument('--no_jit', action='store_true', help='disable torch.jit optimization to prevent error (slower)')
# reproducibility parameters
parser.add_argument('--numpy_seed', type=int, default=0)
parser.add_argument('--torch_seed', type=int, default=0)
parser.add_argument('--save_model', action='store_true', help='saves the model')
parser.add_argument('--save_best_model', action='store_true', help='saves the best model')
parser.add_argument('--resume', default='', help='filepath of checkpoint to load the model')
parser.add_argument('--summary_file', default='', help='file to write summary')
args = parser.parse_args()
if args.batchsize_net > 0:
assert args.batchsize // args.batchsize_net == args.batchsize / args.batchsize_net, 'batchsize_net must divide batchsize'
print(f'Arguments : {args}')
learning_rates = ast.literal_eval(args.lr_schedule)
# Extract the parameters
n_channel_convolution = args.n_channel_convolution
stride_convolution = args.stride_convolution
spatialsize_convolution = args.spatialsize_convolution
stride_avg_pooling = args.stride_avg_pooling
spatialsize_avg_pooling = args.spatialsize_avg_pooling
finalsize_avg_pooling = args.finalsize_avg_pooling
if torch.cuda.is_available():
device = 'cuda'
n_gpus = torch.cuda.device_count()
else:
device = 'cpu'
print(f'device: {device}')
torch.manual_seed(args.torch_seed)
np.random.seed(args.numpy_seed)
train_sampler = None
# Define the dataset
if args.dataset == 'cifar10':
spatial_size = 32
padding = 0 if args.no_padding else 4
transform_train = transforms.Compose([
transforms.RandomCrop(spatial_size, padding=padding),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
trainset = CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batchsize, shuffle=True, num_workers=args.num_workers)
n_classes=10
testset = CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=args.batchsize, shuffle=False, num_workers=args.num_workers)
elif args.dataset in ['imagenet32', 'imagenet64', 'imagenet128']:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
n_arrays_train = 10
padding = 4
spatial_size = 32
if args.dataset=='imagenet64':
spatial_size = 64
padding = 8
if args.dataset=='imagenet128':
spatial_size = 128
padding = 16
n_arrays_train = 100
n_classes = 1000
if args.no_padding:
padding = 0
transforms_train = [
transforms.RandomCrop(spatial_size, padding=padding, padding_mode=args.padding_mode),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
transforms_test = [transforms.ToTensor(), normalize]
trainset = Imagenet32(args.path_train, transform=transforms.Compose(transforms_train), sz=spatial_size, n_arrays=n_arrays_train)
testset = Imagenet32(args.path_test, transform=transforms.Compose(transforms_test), sz=spatial_size)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=args.batchsize, shuffle=True,
num_workers=args.num_workers, pin_memory=True)
testloader = torch.utils.data.DataLoader(
testset,
batch_size=args.batchsize, shuffle=False,
num_workers=args.num_workers, pin_memory=True)
n_classes = 1000
# WIP
elif args.dataset in ['imagenet']:
spatial_size = 64
traindir = os.path.join(args.path, 'train')
valdir = os.path.join(args.path, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
trainset = datasets.ImageFolder(
traindir,
transforms.Compose([
#MODIF
#transforms.RandomResizedCrop(64),
transforms.Resize(72),
transforms.RandomCrop(64),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True,
num_workers=8, pin_memory=True)
testset = datasets.ImageFolder(valdir, transforms.Compose([
#MODIF
# transforms.Resize(64),
transforms.Resize(72),
transforms.CenterCrop(64),
transforms.ToTensor(),
normalize,
]))
testloader = torch.utils.data.DataLoader(
testset,
batch_size=args.batchsize, shuffle=False,
num_workers=args.num_workers, pin_memory=True)
n_classes = 1000
elif args.dataset == 'DTD':
spatial_size = 64
classes, trainset, testset, trainloader, testloader, trainloader_norandom = Dataloder(args.path_train, spatial_size=spatial_size, batchsize=args.batchsize).getloader()
n_classes = len(classes)
def lowestk_heaviside(x, k):
if x.dtype == torch.float16:
return (x < x.kthvalue(dim=1, k=k+1, keepdim=True).values).half()
return (x < x.kthvalue(dim=1, k=k+1, keepdim=True).values).float()
def lowestk_sigmoid(x, k, sigmoid):
if x.dtype == torch.float16:
return torch.sigmoid((x.kthvalue(dim=1, k=k+1, keepdim=True).values - x)/sigmoid).half()
return torch.sigmoid((x.kthvalue(dim=1, k=k+1, keepdim=True).values - x)/sigmoid).float()
def compute_channel_mean_and_std(loader, net, n_channel_convolution,
kernel_convolution, bias_convolution, n_epochs=1, seed=0):
mean1, mean2 = torch.DoubleTensor(n_channel_convolution).fill_(0).to(device), torch.DoubleTensor(n_channel_convolution).fill_(0).to(device)
std1, std2 = torch.DoubleTensor(n_channel_convolution).fill_(0).to(device), torch.DoubleTensor(n_channel_convolution).fill_(0).to(device)
print('First pass to compute the mean')
N = 0
torch.manual_seed(seed)
with torch.no_grad():
for i_epoch in range(n_epochs):
for batch_idx, (inputs, _) in enumerate(loader):
if torch.cuda.is_available():
inputs = inputs.half()
if args.batchsize_net > 0:
outputs = []
for i in range(np.ceil(inputs.size(0)/args.batchsize_net).astype('int')):
start, end = i*args.batchsize_net, min((i+1)*args.batchsize_net, inputs.size(0))
inputs_batch = inputs[start:end].to(device)
outputs.append(net(inputs_batch))
outputs1 = torch.cat([out[0] for out in outputs], dim=0)
outputs2 = torch.cat([out[1] for out in outputs], dim=0)
else:
inputs = inputs.to(device)
outputs1, outputs2 = net(inputs)
outputs1, outputs2 = outputs1.float(), outputs2.float()
n = inputs.size(0)
mean1 = N/(N+n) * mean1 + outputs1.mean(dim=(0, 2, 3)).double() * n/(N+n)
mean2 = N/(N+n) * mean2 + outputs2.mean(dim=(0, 2, 3)).double() * n/(N+n)
N += n
mean1 = mean1.view(1, -1, 1, 1).float()
mean2 = mean2.view(1, -1, 1, 1).float()
print('Second pass to compute the std')
N = 0
torch.manual_seed(seed)
with torch.no_grad():
for i_epoch in range(n_epochs):
for batch_idx, (inputs, _) in enumerate(loader):
if torch.cuda.is_available():
inputs = inputs.half()
if args.batchsize_net > 0:
outputs = []
for i in range(np.ceil(inputs.size(0)/args.batchsize_net).astype('int')):
start, end = i*args.batchsize_net, min((i+1)*args.batchsize_net, inputs.size(0))
inputs_batch = inputs[start:end].to(device)
outputs.append(net(inputs_batch))
outputs1 = torch.cat([out[0] for out in outputs], dim=0)
outputs2 = torch.cat([out[1] for out in outputs], dim=0)
else:
inputs = inputs.to(device)
outputs1, outputs2 = net(inputs)
outputs1, outputs2 = outputs1.float(), outputs2.float()
n = inputs.size(0)
std1 = N/(N+n) * std1 + ((outputs1 - mean1)**2).mean(dim=(0, 2, 3)).double() * n/(N+n)
std2 = N/(N+n) * std2 + ((outputs2 - mean2)**2).mean(dim=(0, 2, 3)).double() * n/(N+n)
N += n
std1, std2 = torch.sqrt(std1), torch.sqrt(std2)
return mean1, mean2, std1.float().view(1, -1, 1, 1), std2.float().view(1, -1, 1, 1)
class Net(nn.Module):
def __init__(self, kernel_convolution, bias_convolution, spatialsize_avg_pooling, stride_avg_pooling, finalsize_avg_pooling, k_neighbors=1, sigmoid=0.):
super(Net, self).__init__()
self.kernel_convolution = nn.Parameter(kernel_convolution, requires_grad=False)
self.bias_convolution = nn.Parameter(bias_convolution, requires_grad=False)
self.pool_size = spatialsize_avg_pooling
self.pool_stride = stride_avg_pooling
self.finalsize_avg_pooling = finalsize_avg_pooling
self.k_neighbors = k_neighbors
self.sigmoid = sigmoid
def forward(self, x):
out = F.conv2d(x, self.kernel_convolution)
if self.sigmoid > 0:
out1 = lowestk_sigmoid(-out + self.bias_convolution, self.k_neighbors, self.sigmoid)
else:
out1 = lowestk_heaviside(-out + self.bias_convolution, self.k_neighbors)
out1 = F.avg_pool2d(out1, self.pool_size, stride=self.pool_stride, ceil_mode=True)
if self.finalsize_avg_pooling > 0:
out1 = F.adaptive_avg_pool2d(out1, self.finalsize_avg_pooling)
if self.sigmoid > 0:
out2 = lowestk_sigmoid(out + self.bias_convolution, self.k_neighbors, self.sigmoid)
else:
out2 = lowestk_heaviside(out + self.bias_convolution, self.k_neighbors)
out2 = F.avg_pool2d(out2, self.pool_size, stride=self.pool_stride, ceil_mode=True)
if self.finalsize_avg_pooling > 0:
out2 = F.adaptive_avg_pool2d(out2, self.finalsize_avg_pooling)
return out1, out2
# new version, whitening computed on all the patches of the dataset
whitening_file = f'data/whitening_{args.dataset}_patchsize{spatialsize_convolution}.npz'
if not os.path.exists(whitening_file):
print('Computing whitening...')
if args.dataset == 'cifar10':
trainset_whitening = CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor())
trainloader_whitening = torch.utils.data.DataLoader(trainset_whitening, batch_size=1000, shuffle=False, num_workers=args.num_workers)
stride = 1
elif args.dataset in ['imagenet32', 'imagenet64', 'imagenet128']:
stride = 2
trainset_whitening = Imagenet32(args.path_train, transform=transforms.ToTensor(), sz=spatial_size, n_arrays=n_arrays_train)
trainloader_whitening = torch.utils.data.DataLoader(
trainset_whitening, batch_size=100, shuffle=False,
num_workers=args.num_workers, pin_memory=True)
elif args.dataset in ['imagenet']:
stride = 2
spatial_size = 64
traindir = os.path.join(args.path, 'train')
valdir = os.path.join(args.path, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
trainset_whitening = datasets.ImageFolder(
traindir,
transforms.Compose([
# MODIF
# transforms.Resize(64),
# transforms.CenterCrop(64),
transforms.Resize(72),
transforms.CenterCrop(64),
transforms.ToTensor(),
]))
trainloader_whitening = torch.utils.data.DataLoader(
trainset_whitening, batch_size=100, shuffle=False,
num_workers=args.num_workers, pin_memory=True)
elif args.dataset == 'DTD':
trainset_whitening = None
trainloader_whitening = trainloader_norandom
stride = 1
patches_mean, whitening_eigvecs, whitening_eigvals = utils.compute_whitening_from_loader(trainloader_whitening, patch_size=spatialsize_convolution, stride=stride)
del trainloader_whitening
del trainset_whitening
np.savez(whitening_file, patches_mean=patches_mean,
whitening_eigvecs=whitening_eigvecs,
whitening_eigvals=whitening_eigvals)
print(f'Whitening computed and saved in file {whitening_file}')
print(f'Loading whitening from file {whitening_file}...')
whitening = np.load(whitening_file)
whitening_eigvecs = whitening['whitening_eigvecs']
whitening_eigvals = whitening['whitening_eigvals']
patches_mean = whitening['patches_mean']
if args.whitening_reg >= 0:
# inv_sqrt_eigvals = np.diag(np.power(whitening_eigvals + args.whitening_reg, -1/2))
inv_sqrt_eigvals = np.diag(1. / np.sqrt(whitening_eigvals + args.whitening_reg))
whitening_op = whitening_eigvecs.dot(inv_sqrt_eigvals).astype('float32')
else:
whitening_op = np.eye(whitening_eigvals.size, dtype='float32')
if hasattr(trainset, 'data'):
print('Selecting random patches from trainset array...')
t = trainset.data
n_images_trainset = t.shape[0]
print(f'Trainset : {t.shape}')
patches = utils.select_patches_randomly(t, patch_size=spatialsize_convolution, n_patches=n_channel_convolution, seed=args.numpy_seed)
patches = patches.astype('float64')
patches /= 255.0
print(f'patches randomly selected: {patches.shape}, mean {patches.mean()} std {patches.std()}')
else:
print('Selecting random patches from loader...')
n_images_trainset = len(trainloader.dataset)
if args.dataset == 'cifar10':
trainset_select_patches = CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor())
trainloader_select_patches = torch.utils.data.DataLoader(trainset_select_patches, batch_size=args.batchsize, shuffle=False, num_workers=args.num_workers)
elif args.dataset in ['imagenet32', 'imagenet64', 'imagenet128']:
trainset_select_patches = Imagenet32(args.path_train, transform=transforms.ToTensor(), sz=spatial_size, n_arrays=n_arrays_train)
trainloader_select_patches = torch.utils.data.DataLoader(
trainset_select_patches, batch_size=args.batchsize, shuffle=False,
num_workers=args.num_workers, pin_memory=True)
elif args.dataset in ['imagenet']:
stride = 2
spatial_size = 64
traindir = os.path.join(args.path, 'train')
trainset_select_patches = datasets.ImageFolder(
traindir,
transforms.Compose([
#MODIF
# transforms.Resize(64),
# transforms.CenterCrop(64),
transforms.Resize(72),
transforms.CenterCrop(64),
transforms.ToTensor(),
]))
trainloader_select_patches = torch.utils.data.DataLoader(
trainset_select_patches, batch_size=args.batchsize, shuffle=False,
num_workers=args.num_workers, pin_memory=True)
elif args.dataset == 'DTD':
trainloader_select_patches = trainloader_norandom
n_patches_per_rowcol = spatial_size - spatialsize_convolution + 1
patches = utils.select_patches_from_loader(trainloader_select_patches, args.batchsize, spatialsize_convolution, n_channel_convolution, n_images_trainset, n_patches_per_rowcol, func=None, seed=args.numpy_seed, stride=1).numpy().astype('float64')
print(f'patches randomly selected: {patches.shape}, mean {patches.mean()} std {patches.std()}')
orig_shape = patches.shape
patches = patches.reshape(patches.shape[0], -1)
WTW_patches = (patches).dot(whitening_op).dot(whitening_op.T)
kernel_convolution = torch.from_numpy(WTW_patches.astype('float32')).view(orig_shape)
print(f'kernel convolution shape: {kernel_convolution.shape}')
W_patches_norm_square = np.linalg.norm((patches).dot(whitening_op), axis=1)**2
bias_convolution = torch.from_numpy(0.5 * W_patches_norm_square.astype('float32')).view(1, -1, 1, 1)
print(f'bias convolution shape: {bias_convolution.shape}')
kernel_convolution = torch.from_numpy(WTW_patches.astype('float32')).view(orig_shape)
# print('Saving kernel and bias_convolutiona and exiting.')
# np.save('bias_convolution.npy', bias_convolution.numpy())
# np.save('kernel_convolution.npy', kernel_convolution.numpy())
# exit()
# print('loading kernel and bias_convolution')
# bias_convolution = torch.from_numpy(np.load('bias_convolution.npy'))
# kernel_convolution = torch.from_numpy(np.load('kernel_convolution.npy'))
if args.gaussian_patches:
patches = np.random.normal(0, 1, size=patches.shape)
kernel_convolution = torch.from_numpy(patches.dot(whitening_op.T).astype('float32')).view(orig_shape)
patches_norm_square = np.linalg.norm(patches, axis=1)**2
bias_convolution = torch.from_numpy(0.5 * patches_norm_square.astype('float32')).view(1, -1, 1, 1)
if args.no_cudnn:
torch.backends.cudnn.enabled = False
else:
cudnn.benchmark = True
params = []
if torch.cuda.is_available() and not args.learn_patches:
kernel_convolution = kernel_convolution.half().cuda()
bias_convolution = bias_convolution.half().cuda()
if args.learn_patches:
kernel_convolution = nn.Parameter(kernel_convolution, requires_grad=True)
bias_convolution = nn.Parameter(bias_convolution, requires_grad=True)
params.append(kernel_convolution)
params.append(bias_convolution)
criterion = nn.CrossEntropyLoss()
k_neighbors = args.kneighbors if args.kneighbors > 0 else int(n_channel_convolution * args.kneighbors_fraction)
net = Net(kernel_convolution, bias_convolution, spatialsize_avg_pooling,
stride_avg_pooling, finalsize_avg_pooling,
k_neighbors=k_neighbors, sigmoid=args.sigmoid).to(device)
x = torch.rand(1, 3, spatial_size, spatial_size).to(device)
if torch.cuda.is_available() and not args.learn_patches:
x = x.half()
out1, out2 = net(x)# , kernel_convolution, bias_convolution)
if args.feat_square:
out1 = torch.cat([out1, out1**2], dim=1)
out2 = torch.cat([out2, out1**2], dim=1)
net_2 = None
if args.spatialsize_convolution_2 > 0:
def func(x):
if torch.cuda.is_available():
x = x.half().cuda()
return torch.cat(net(x), dim=1).float()
n_patches_per_rowcol_2 = out1.size(2) - spatialsize_convolution + 1
patches_2 = utils.select_patches_from_loader(trainloader_select_patches, args.batchsize, args.spatialsize_convolution_2, args.n_channel_convolution_2, n_images_trainset, n_patches_per_rowcol_2, func=func, seed=args.numpy_seed, stride=1).numpy().astype('float64')
print(f'patches 2 shape {patches_2.shape}')
patches_mean_2, whitening_eigvecs_2, whitening_eigvals_2 = utils.compute_whitening_from_loader(trainloader_select_patches, patch_size=args.spatialsize_convolution_2, stride=1, func=func)
print(f'Whitening 2 : mean {patches_mean_2.shape} eigvecs {whitening_eigvecs_2.shape}, eigvals max {whitening_eigvals_2.max()}, min {whitening_eigvals_2.min()} mean {whitening_eigvals_2.mean()}')
orig_shape_2 = patches_2.shape
patches_2 = patches_2.reshape(patches_2.shape[0], -1)
print(f'patches 2 shape {patches_2.shape}')
if args.whitening_reg_2 >= 0:
inv_sqrt_eigvals_2 = np.diag(1. / np.sqrt(whitening_eigvals_2 + args.whitening_reg_2))
whitening_op_2 = whitening_eigvecs_2.dot(inv_sqrt_eigvals_2).astype('float32')
else:
whitening_op_2 = np.eye(whitening_eigvals_2.size, dtype='float32')
W_patches_2 = patches_2.dot(whitening_op_2)
W_patches_2_norm_square = np.linalg.norm((patches_2).dot(whitening_op_2), axis=1)**2
WTW_patches_2 = W_patches_2.dot(whitening_op_2.T)
kernel_convolution_2 = torch.from_numpy(WTW_patches_2.astype('float32')).view(orig_shape_2)
print(f'kernel convolution 2 shape: {kernel_convolution_2.shape}')
bias_convolution_2 = torch.from_numpy(0.5 * W_patches_2_norm_square.astype('float32')).view(1, -1, 1, 1)
print(f'bias convolution 2 shape: {bias_convolution_2.shape}')
k_neighbors_2 = args.kneighbors_2 if args.kneighbors_2 > 0 else int(args.n_channel_convolution_2 * args.kneighbors_fraction_2)
net_2 = Net(kernel_convolution_2, bias_convolution_2, spatialsize_avg_pooling=1,
stride_avg_pooling=1, finalsize_avg_pooling=0,
k_neighbors=k_neighbors_2, sigmoid=args.sigmoid_2).to(device)
out1, out2 = net_2(torch.cat([out1, out2], dim=1).float())
print(f'Net output size: out1 {out1.shape[-3:]} out2 {out2.shape[-3:]}')
if args.resnet:
resnet = utils.ResNet(2*n_channel_convolution).to(device)
params += list(resnet.parameters())
classifier_blocks = [None, None, None, None, None, None]
else:
classifier_blocks = utils.create_classifier_blocks(out1, out2, args, params, n_classes)
print(f'Parameters shape {[param.shape for param in params]}')
print(f'N parameters : {sum([np.prod(list(param.shape)) for param in params])/1e6} millions')
del x, out1, out2
if torch.cuda.is_available() and not args.no_jit:
print('optimizing net execution with torch.jit')
if args.batchsize_net > 0:
trial = torch.rand(args.batchsize_net//n_gpus, 3, spatial_size, spatial_size).to(device)
else:
trial = torch.rand(args.batchsize//n_gpus, 3, spatial_size, spatial_size).to(device)
if torch.cuda.is_available() and not args.learn_patches:
trial = trial.half()
inputs = {'forward': (trial)}
with torch.jit.optimized_execution(True):
net = torch.jit.trace_module(net, inputs, check_trace=False, check_tolerance=False)
del inputs
del trial
if args.multigpu and n_gpus > 1:
print(f'{n_gpus} gpus available, using Dataparralel for net')
net = nn.DataParallel(net)
if args.normalize_net_outputs:
mean_std_file = f'data/mean_std_{args.dataset}_seed{args.numpy_seed}_patchsize{spatialsize_convolution}_npatches{args.n_channel_convolution}_reg{args.whitening_reg}_kfraction{args.kneighbors_fraction}.npz'
if not os.path.exists(mean_std_file):
mean1, mean2, std1, std2 = compute_channel_mean_and_std(trainloader, net, n_channel_convolution,
kernel_convolution, bias_convolution, n_epochs=1, seed=0)
np.savez(mean_std_file, mean1=mean1.cpu().numpy(), mean2=mean2.cpu().numpy(), std1=std1.cpu().numpy(), std2=std2.cpu().numpy())
print(f'Net outputs mean and std computed and saved in file {mean_std_file}')
mean_std = np.load(mean_std_file)
mean1 = torch.from_numpy(mean_std['mean1']).to(device)
mean2 = torch.from_numpy(mean_std['mean2']).to(device)
std1 = torch.from_numpy(mean_std['std1']).to(device)
std2 = torch.from_numpy(mean_std['std2']).to(device)
def train(epoch):
net.train()
batch_norm1, batch_norm2, batch_norm, classifier1, classifier2, classifier = classifier_blocks
for bn in [batch_norm1, batch_norm2, batch_norm]:
if bn is not None:
bn.train()
train_loss, total, correct = 0, 0, 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
if torch.cuda.is_available() and not args.learn_patches:
inputs = inputs.half()
targets = targets.to(device)
with torch.enable_grad() if args.learn_patches else torch.no_grad():
if args.batchsize_net > 0:
outputs = []
for i in range(np.ceil(inputs.size(0)/args.batchsize_net).astype('int')):
start, end = i*args.batchsize_net, min((i+1)*args.batchsize_net, inputs.size(0))
inputs_batch = inputs[start:end].to(device)
outputs.append(net(inputs_batch))
outputs1 = torch.cat([out[0] for out in outputs], dim=0)
outputs2 = torch.cat([out[1] for out in outputs], dim=0)
else:
inputs = inputs.to(device)
outputs1, outputs2 = net(inputs)
if net_2 is not None:
outputs1, outputs2 = net_2(torch.cat([outputs1, outputs2], dim=1).float())
if args.feat_square:
outputs1 = torch.cat([outputs1, outputs1**2], dim=1)
outputs2 = torch.cat([outputs2, outputs1**2], dim=1)
if args.resnet:
outputs = torch.cat([outputs1, outputs2], dim=1).float()
else:
outputs1, outputs2 = outputs1.float(), outputs2.float()
optimizer.zero_grad()
if args.resnet:
outputs = resnet(outputs)
else:
if args.normalize_net_outputs:
outputs1 = (outputs1 - mean1) / std1
outputs2 = (outputs2 - mean2) / std2
outputs, targets = utils.compute_classifier_outputs(outputs1, outputs2, targets, args, batch_norm1,
batch_norm2, batch_norm, classifier1, classifier2, classifier,
train=True)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
if torch.isnan(loss):
return False, None
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
train_acc = 100. * correct / total
print('Train, epoch: {}; Loss: {:.2f} | Acc: {:.1f} ; kneighbors_fraction {:.3f}'.format(
epoch, train_loss / (batch_idx + 1), train_acc, args.kneighbors_fraction))
return True, train_acc
def test(epoch, loader=testloader, msg='Test'):
global best_acc
net.eval()
batch_norm1, batch_norm2, batch_norm, classifier1, classifier2, classifier = classifier_blocks
for bn in [batch_norm1, batch_norm2, batch_norm]:
if bn is not None:
bn.eval()
test_loss, correct_top1, correct_top5, total = 0, 0, 0, 0
outputs_list = []
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(loader):
if torch.cuda.is_available() and not args.learn_patches:
inputs = inputs.half()
targets = targets.to(device)
if args.batchsize_net > 0:
outputs = []
for i in range(np.ceil(inputs.size(0)/args.batchsize_net).astype('int')):
start, end = i*args.batchsize_net, min((i+1)*args.batchsize_net, inputs.size(0))
inputs_batch = inputs[start:end].to(device)
outputs.append(net(inputs_batch))
outputs1 = torch.cat([out[0] for out in outputs], dim=0)
outputs2 = torch.cat([out[1] for out in outputs], dim=0)
else:
inputs = inputs.to(device)
outputs1, outputs2 = net(inputs)
if net_2 is not None:
outputs1, outputs2 = net_2(torch.cat([outputs1, outputs2], dim=1).float())
if args.feat_square:
outputs1 = torch.cat([outputs1, outputs1**2], dim=1)
outputs2 = torch.cat([outputs2, outputs1**2], dim=1)
if args.resnet:
outputs = torch.cat([outputs1, outputs2], dim=1).float()
outputs = resnet(outputs)
else:
outputs1, outputs2 = outputs1.float(), outputs2.float()
if args.normalize_net_outputs:
outputs1 = (outputs1 - mean1) / std1
outputs2 = (outputs2 - mean2) / std2
outputs, targets = utils.compute_classifier_outputs(
outputs1, outputs2, targets, args, batch_norm1,
batch_norm2, batch_norm, classifier1, classifier2, classifier,
train=False)
loss = criterion(outputs, targets)
outputs_list.append(outputs)
test_loss += loss.item()
cor_top1, cor_top5 = utils.correct_topk(outputs, targets, topk=(1, 5))
correct_top1 += cor_top1
correct_top5 += cor_top5
_, predicted = outputs.max(1)
total += targets.size(0)
test_loss /= (batch_idx + 1)
acc1, acc5 = 100. * correct_top1 / total, 100. * correct_top5 / total
print(f'{msg}, epoch: {epoch}; Loss: {test_loss:.2f} | Acc: {acc1:.1f} @1 {acc5:.1f} @5 ; kneighbors_fraction {args.kneighbors_fraction:.3f}')
outputs = torch.cat(outputs_list, dim=0).cpu()
return acc1, outputs
hashname = hashlib.md5(str.encode(json.dumps(vars(args), sort_keys=True))).hexdigest()
if args.save_model:
checkpoint_dir = f'checkpoints/{args.dataset}_{args.n_channel_convolution}patches_{args.spatialsize_convolution}x{args.spatialsize_convolution}/{args.optimizer}_{args.lr_schedule}'
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
checkpoint_file = os.path.join(checkpoint_dir, f'{hashname}.pth.tar')
print(f'Model will be saved at file {checkpoint_file}.')
state = {'args': args}
if os.path.exists(checkpoint_file):
state = torch.load(checkpoint_file)
start_epoch = 0
if args.resume:
state = torch.load(args.resume)
start_epoch = state['epoch'] + 1
print(f'Resuming from file {args.resume}, start epoch {start_epoch}...')
if start_epoch not in learning_rates:
closest_i = max([i for i in learning_rates if i <= start_epoch])
if args.optimizer == 'Adam':
optimizer = optim.Adam(params, lr=learning_rates[closest_i], weight_decay=args.weight_decay)
elif args.optimizer == 'SGD':
optimizer = optim.SGD(params, lr=learning_rates[closest_i], momentum=args.sgd_momentum, weight_decay=args.weight_decay)
optimizer.load_state_dict(state['optimizer'])
for block, name in zip(classifier_blocks, ['bn1','bn2', 'bn', 'cl1', 'cl2', 'cl' ]):
if block is not None:
block.load_state_dict(state[name])
acc, outputs = test(-1)
start_time = time.time()
best_test_acc, best_epoch = 0, -1
for i in range(start_epoch, args.nepochs):
if i in learning_rates:
print('new lr:'+str(learning_rates[i]))
if args.optimizer == 'Adam':
optimizer = optim.Adam(params, lr=learning_rates[i], weight_decay=args.weight_decay)
elif args.optimizer == 'SGD':
optimizer = optim.SGD(params, lr=learning_rates[i], momentum=args.sgd_momentum, weight_decay=args.weight_decay)
else:
raise NotImplementedError('optimizer {} not implemented'.format(args.optimizer))
no_nan_in_train_loss, train_acc = train(i)
if not no_nan_in_train_loss:
print(f'Epoch {i}, nan in loss, stopping training')
break
test_acc, outputs = test(i)
if test_acc > best_test_acc:
print(f'Best acc ({test_acc}).')
best_test_acc = test_acc
best_epoch = i
if args.save_model or args.save_best_model and best_epoch == i:
print(f'saving...')
state.update({
'optimizer': optimizer.state_dict(),
'epoch': i,
'acc': test_acc,
'outputs': outputs,
})
for block, name in zip(classifier_blocks, ['bn1','bn2', 'bn', 'cl1', 'cl2', 'cl']):
if block is not None:
state.update({
name: block.state_dict()
})
torch.save(state, checkpoint_file)
print(f'Best test acc. {best_test_acc} at epoch {best_epoch}/{i}')
hours = (time.time() - start_time) / 3600
print(f'Done in {hours:.1f} hours with {n_gpus} GPU')
if args.summary_file:
with open(args.summary_file, "a+") as f:
f.write(f'args: {args}, final_train_acc: {train_acc}, final_test_acc: {test_acc}, best_test_acc: {best_test_acc}\n')