-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbigdata.py
51 lines (44 loc) · 1.3 KB
/
bigdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import pandas as pd
from sklearn import datasets
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
data = np.load('population.npz', allow_pickle=True)
# print(data.files)
# print(data['data'])
# print(data['feature_names'])
print(data['data'])
plt.rcParams['font.sans-serif'] = 'SimHei'
name = data['feature_names']
values = data['data']
def function(data):
from mpl_toolkits.mplot3d import Axes3D
#print(dims, types)
flg=plt.figure()
ax=Axes3D(flg)
o = 0
lei = ["nan","nv","cheng","nong"]
for i in range(4):
x = []
y = []
z = []
for j in range(20):
print(data['data'][j][0][:4])
x.append(int(data['data'][j][0][:4]))
y.append(int(data['data'][j][i + 2]))
z.append(i)
ax.scatter(x, z, y, label=lei[i])
# for iris_type in types:
# o = o + 1
# tmp_data=iris_data[iris_data.species ==iris_type]
# x,y,z = tmp_data[dims['x']], tmp_data[dims['z']],tmp_data[dims['z']]
# x = y =z =[1+o,2+o,3+o,4+o,5+o]
# ax.scatter(x, y, z, label=o)
# print(type(tmp_data[dims['z']]))
ax.legend(loc='upper left')
ax.set_zlabel('renshu')
ax.set_xlabel('nianfen')
ax.set_ylabel('leibie')
plt.show()
if __name__ == '__main__':
function(data)