-
Notifications
You must be signed in to change notification settings - Fork 1
/
load_data.py
113 lines (102 loc) · 3.79 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import scipy.io
import numpy as np
import scipy.sparse
import torch
import csv
import json
from os import path as path
DATAPATH = path.dirname(path.abspath(__file__)) + '/data/'
def load_fb100(filename):
# e.g. filename = Rutgers89 or Cornell5 or Wisconsin87 or Amherst41
# columns are: student/faculty, gender, major,
# second major/minor, dorm/house, year/ high school
# 0 denotes missing entry
mat = scipy.io.loadmat(DATAPATH + 'facebook100/' + filename + '.mat')
A = mat['A']
metadata = mat['local_info']
return A, metadata
def load_twitch(lang):
assert lang in ('DE', 'ENGB', 'ES', 'FR', 'PTBR', 'RU', 'TW'), 'Invalid dataset'
filepath = f"data/twitch/{lang}"
label = []
node_ids = []
src = []
targ = []
uniq_ids = set()
with open(f"{filepath}/musae_{lang}_target.csv", 'r') as f:
reader = csv.reader(f)
next(reader)
for row in reader:
node_id = int(row[5])
# handle FR case of non-unique rows
if node_id not in uniq_ids:
uniq_ids.add(node_id)
label.append(int(row[2]=="True"))
node_ids.append(int(row[5]))
node_ids = np.array(node_ids, dtype=np.int)
with open(f"{filepath}/musae_{lang}_edges.csv", 'r') as f:
reader = csv.reader(f)
next(reader)
for row in reader:
src.append(int(row[0]))
targ.append(int(row[1]))
with open(f"{filepath}/musae_{lang}_features.json", 'r') as f:
j = json.load(f)
src = np.array(src)
targ = np.array(targ)
label = np.array(label)
inv_node_ids = {node_id:idx for (idx, node_id) in enumerate(node_ids)}
reorder_node_ids = np.zeros_like(node_ids)
for i in range(label.shape[0]):
reorder_node_ids[i] = inv_node_ids[i]
n = label.shape[0]
A = scipy.sparse.csr_matrix((np.ones(len(src)),
(np.array(src), np.array(targ))),
shape=(n,n))
features = np.zeros((n,3170))
for node, feats in j.items():
if int(node) >= n:
continue
features[int(node), np.array(feats, dtype=int)] = 1
features = features[:, np.sum(features, axis=0) != 0] # remove zero cols
new_label = label[reorder_node_ids]
label = new_label
return A, label, features
def load_pokec():
pathname = f"{DATAPATH}pokec/"
node_filename = pathname + 'soc-pokec-profiles.txt'
with open(node_filename, 'r') as f:
user_lst = f.readlines()
label = []
for user in user_lst:
gender = user.split('\t')[3]
gender = int(gender) if gender != 'null' else -1
label.append(gender)
label = np.array(label)
edge_filename = pathname + 'soc-pokec-relationships.txt'
src = []
targ = []
with open(edge_filename, 'r') as f:
count = 0
for row in f:
elts = row.split()
src.append(int(elts[0]))
targ.append(int(elts[1]))
count += 1
if count % 3000000 == 0:
print("Loading edges:", count)
src = np.array(src) - 1
targ = np.array(targ) - 1
A = scipy.sparse.csr_matrix((np.ones(len(src)), (src, targ)))
return A, label
def load_twitch_gamer(nodes, task="dead_account"):
nodes = nodes.drop('numeric_id', axis=1)
nodes['created_at'] = nodes.created_at.replace('-', '', regex=True).astype(int)
nodes['updated_at'] = nodes.updated_at.replace('-', '', regex=True).astype(int)
one_hot = {k: v for v, k in enumerate(nodes['language'].unique())}
lang_encoding = [one_hot[lang] for lang in nodes['language']]
nodes['language'] = lang_encoding
if task is not None:
label = nodes[task].to_numpy()
features = nodes.drop(task, axis=1).to_numpy()
return label, features